Bài 27. Thể tích

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho khối chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng b. Tính thể tích của khối chóp.

Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:49

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác SAO vuông tại O có

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{2}}  = \frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}\)

\({S_{ABCD}} = {a^2}\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}.{a^2} = \frac{{{a^2}\sqrt {4{b^2} - 2{a^2}} }}{6}\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết