Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)
Xét tam giác SAO vuông tại O có
\(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} = \frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}\)
\({S_{ABCD}} = {a^2}\)
Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}.{a^2} = \frac{{{a^2}\sqrt {4{b^2} - 2{a^2}} }}{6}\)