Một hình chữ nhật có các cạnh tỉ lệ với nhau theo 4:7 và có diện tích 112\(^{cm^2}\). Tính các cạnh của hình chữ nhật
Hình chữ nhật ABCD có chiều dài DC = 27cm, chiều rộng AD = 20,4cm. E là một điểm trên AB. Tính diện tích tam giác ECD?
Giải giúp mình nhé !! đang cần đó
Người ta dán liền nhau 500 con tem hình chữ nhật lên một tấm bìa hình vuông có cạnh dài 1 m , biết mỗi con tem có chiều dài 3 cm chiều rộng 22 mm . o nhiêu xăng - ti - mét vuông ?
Cho tứ giác ABCD nội tiếp đường tròn (O) . Gọi E là giao điểm của 2 đường chéo ; Gọi A' , B' , C' , D' là hình chiếu của E trên AB , BC, CD , DA. Gọi M là giao điểm của A'B' và C'D'. Chứng minh A , E , M thẳng hàng
a) Viết pt đường thẳng y =ax +b biết đồ thị của nó đi qua điểm S (2;3) và cắt trục tọa độ tại hai điểm M,N sao cho tam giác OMN có diện tích bằng 2
b) Tìm m để đồ thị hàm số y=m2x +m +1 tạo vs các trục tọa độ một tam giác cân
Cho hình tam giác ABC (AB < AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại D, E. Gọi H là giao điểm của BD và CE: F là giao điểm của AH và BC.
a) Chứng minh: AF \(\perp\) BC và \(\overline{AFD}\) = \(\overline{ACE}\) .
b) Gọi M là trung điểm của AH. Chứng minh: MD \(\perp\) OD và 5 điểm M, D, O, F, E cùng thuộc một đường tròn.
c) Gọi K là giao điểm của AH và DE. Chứng minh MD2 = MK.MF và K là trực tâm của tam giác MBC.
d) Chứng minh: \(\frac{2}{FK}\) = \(\frac{1}{FH}\) + \(\frac{1}{FA}\) .
Bài 1
\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-28\frac{2}{7}:\left(-\frac{2}{5}\right)\)
bài 2
Tính độ dài của các cạnh của 1 tam giác, biết chu vi tam giác là 36cm và các cạnh của tam giác tỉ lệ với các số 3;4;5
Có 10 chiếc máy gặt, làm việc trong 10 giờ thì gặt trong lúa trên cánh đồng có diện tích 10 hécta. Vậy với 25 máy gặt cùng loại, phải mất bao nhiêu giờ mới gặt xong lúa trên 1 cánh đồng có diện tích 25 hécta
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)