Ta có: \(\widehat{BDC}=\widehat{DKF}=45\Rightarrow\widehat{DFK}=90\) Gọi F là giao điểm HK và BD
\(\Rightarrow HK\perp BD\)
Tam giác DBK có: KF,BC là các đường cao cắt tại H
\(\Rightarrow DH\perp BK\)
Ta có: \(\widehat{BDC}=\widehat{DKF}=45\Rightarrow\widehat{DFK}=90\) Gọi F là giao điểm HK và BD
\(\Rightarrow HK\perp BD\)
Tam giác DBK có: KF,BC là các đường cao cắt tại H
\(\Rightarrow DH\perp BK\)
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất
Cho tam giác ABC vuông tại C (CA < CB). Lấy điểm I bất kì trên cạch AB. Trên nửa mặt phẳng bờ AB chứa C, kẻ tia Ax, By cùng vuông góc với AB. Đường vuông góc với IC cắt Ax, By lần lượt tại M và N.
a, Chứng minh \(\Delta\)CAL đồng dạng \(\Delta\)CBN
b, AB.NC=IN.CB
c, \(\widehat{MIN}\) là góc vuông
d, Tìm vị trí điểm I để diện tích \(\Delta\)IMN gấp 2 lần diện tích \(\Delta\)ABC
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)