Cho hình vuông ABCD cạnh a. Gọi I là trung điểm của AB. Gọi M là điểm đối xứng của D qua C. Gọi P là điểm đối xứng của M qua D. Trên tia DA lấy điểm Q sao cho ΔPDQ ∼ ΔIAD. Trên tia BC lấy điểm N sao cho ΔMCN ∼ ΔIAD.
a) Tứ giác MNPQ là hình gì?
b) Đường thẳng DI cắt PN tại E, cắt QM tại F.
Chứng minh: EF = \(\dfrac{MN+PQ}{2}\)
c) Chứng minh AQPN là hình bình hành.
d) Gọi S là giao điểm của PN và QM. Gọi T là giao điểm của QI và DC, R là trung điểm của PQ. Chứng minh: S, T, R thẳng hàng.
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
cho hinh chữ nhật ABCD, AB=16cm,AD=12cm.Kẻ AE vuông góc BD (E thuộc BD)
a) Chứng minh Tam giác ABC đồng dạng Tam giác EBA
b) Tính đoạn EB
c) Đường thẳng AE cắt các đường thẳng CD và BC thứ tự tại G và K.Chứng minh: AE2=EG.EK
d) Lấy điểm M trên cạnh AB,N trên cạnh BC;MN cắt BD ở I CMR: AB/BM+BC/BN=BD/BI
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.
Cho hình thang ABCD có AB // CD, góc A = 90 độ, AB = 3; CD = 8; AD = 10. Trên AD lấy M sao cho AM = 4
a) Δ ABM \(\sim\) Δ DMC
b) Tính diện tích Δ BMC
c) Qua M kẻ đường thẳng song song với CD cắt BC tại N. Tính độ dài MN
Cho tam giác ABC vuông tại A, đường cao AH. Lấy M trên AB, N trên AC sao cho \(AM=\dfrac{1}{3}AB,CN=\dfrac{1}{3}AC.\) Chứng minh \(\widehat{AMH}=\widehat{HNC}\) và \(MH\perp NH\)