Gọi I là giao điểm của DE và CF
MFA = FAE = AEM = 900
=> AEMF là hình chữ nhật
BD là tia phân giác của hình vuông ABCD
=> EBM = 450
mà tam giác EBM vuông tại E
=> Tam giác EBM vuông cân tại E
=> EB = EM
mà EM = AF (AEMF là hình chữ nhật)
=> FA = EB
mà AD = AB (ABCD là hình chữ nhật)
=> AB - EB = AD - FA
=> AE = FD
Xét tam giác EAD và tam giác FDC có:
EA = FD (chứng minh trên)
EAD = FDC (= 900)
AD = DC (ABCD là hình chữ nhật)
=> Tam giác EAD = Tam giác FDC (c.g.c)
=> ADE = DCF (2 góc tương ứng)
mà AED = CDE (2 góc so le trong, AB // CD)
=> ADE + AED = DCF + CDE
mà ADE + AED = 900 (tam giác AED vuông tại A)
=> DCF + CDE = 900
=> Tam giác IDC vuông tại I
=> DE _I_ CF
ôi trời ơi, vừa nói lúc chiều là về tạo tk luôn, chứng tỏ dân chơi thời nay là có thật
Ở đâu ra bài này vậy mầy? Nhìn wen wen!
thằng kia, tao giải được cho tao cái giề?
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H