Cho hình chóp S ABCD, có đáy là hình vuông tâm O, SA vuông góc với mặt phẳng (ABCD). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD.
1.CMR : AH, AK cùng vuông góc với SC. Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng.
2. Chứng minh rằng HK⊥(SAC) , HK ⊥ AI.
Cho hình chóp S.ABCD có SA⊥(ABCD)SA⊥(ABCD)và đáy ABCD là hình vuông. Gọi H,K là hình chiếu của A lên SB,SD
a) Cm AH⊥(SBC)
b) Cm AK⊥(SCD)
c) Qua K vẽ đường thẳng vuông góc với SD tại K cắt CD tại M. Cm SD⊥(BKM)
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và SA = SB = SC = SD. Gọi O là giao điểm của AC và BD. Chứng minh rằng :
a) Đường thẳng SO vuông góc với mặt phẳng (ABCD)
b) Đường thẳng AC vuông góc với mặt phẳng (SBD) và đường thẳng BD vuông góc với mặt phẳng (SAC)
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot \frac{BO}{OC}\cdot \frac{CQ}{QA} = 1,$$ $$\frac{SD}{SC}\cdot \frac{CO}{OB}\cdot \frac{BP}{PA} = 1,$$ trong đó $Q$ là giao điểm của $SN$ và $OM$. Do đó, ta có: $$\frac{SM}{SB} = \frac{SC}{SO},$$ $$\frac{SD}{SC} = \frac{SB}{SO}.$$ Tiếp theo, ta chứng minh $AP \parallel DC$. Ta có $\angle BSA = 90^{\circ}$ và $\angle BSC = \angle DSC$ nên tam giác $BSD$ vuông cân tại $S$. Do đó $SM = NS$. Khi đó, ta có: $$\frac{SM}{SB} = \frac{NS}{NB} = \frac{1}{2}.$$ Từ đó ta suy ra $\frac{SC}{SO} = \frac{1}{2}$, hay $SO = 2SC$. Áp dụng định lí Pythagore trong tam giác $SBO$ ta có: $SB = \sqrt{2}a$. Mặt khác, ta có $OM = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $BM = \frac{\sqrt{2}}{2}a$ và $BO = \frac{\sqrt{6}}{2}a$. Áp dụng định lí Pythagore trong tam giác $SDO$ ta có: $SD = \sqrt{6}a$. Mặt khác, ta có $ON = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $DN = \frac{\sqrt{2}}{2}a$ và $DO = \frac{\sqrt{6}}{2}a$. Ta có $AP \parallel DC$ khi và chỉ khi: $$\frac{BP}{PA} = \frac{AD}{DC} = \sqrt{2} - 1,$$ trong đó ta đã sử dụng tính chất hình học của hình vuông. Từ định lí Menelaus cho tam giác $ACD$, ta có: $$\frac{AD}{CD}\cdot \frac{CP}{PA}\cdot \frac{NB}{ND} = 1.$$ Do đó, ta có: $$\frac{BP}{PA} = \frac{AD}{CD}\cdot \frac{ND}{NB} = (\sqrt{2} - 1)\cdot \frac{\frac{1}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{2 - \sqrt{2}}{2}.$$ Ta cũng có thể tính được $\frac{PM}{PN}$ bằng cách sử dụng định lí Menelaus cho tam giác $ANB$: $$\frac{AP}{PB}\cdot \frac{MB}{MN}\cdot \frac{SN}{SA} = 1,$$ từ đó ta có: $$\frac{PM}{PN} = \frac{SN}{SM}\cdot \frac{PB}{PA}\cdot \frac{MB}{NB} = \frac{2}{1}\cdot \frac{2 - \sqrt{2}}{2}\cdot \frac{\frac{\sqrt{2}}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{1}{3}.$$ Vậy $\frac{PM}{PN} = \frac{1}{3}$, ta đã chứng minh được bài toán.
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có ABD là tam giác đều, BCD là tam giác cân tại C có ∠BCD = 120o. SA vuông góc với mp đáy.
a, Gọi H, K là hình chiếu vuông góc của A trên SB, SD. CM: SC vuông góc với (AHK).
b, Gọi C' là giao điểm của SC với mp (AHK). Tính diện tích tứ giác AHC'K khi AB = SA = a.
Mình chỉ cần giúp phần b thôi nha, rất mong có phần giải thích để tìm ra giao điểm C'.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật ,AB=a,AD=a√3 , mp(SAB)vuông góc với đáy và tam giác SAB cân tại S , I là trung điểm AB , K là trung điểm CD góc giữa SB và mp đáy là 45 độ . a) chứng minh SI vuông vs (ABCD) b)chứng minh rằng (SIK)vuông (SCD) c) tính góc giữa SC và (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a, BC=a√3 ; ∆SBC vuông tại B, ∆SCD vuông tại A, SD=a√5a, Chứng minh SA ⊥ (ABCD) và tính SAb, Đường thẳng qua A vuông góc với AC cắt CB, CD tại I và J. Gọi H là hình chiếu vuông góc của A lên SC. Xác định K và L lần lượt là giao điểm của SB và SD với mặt (HIJ). Chứng minh AK ⊥ (SBC) ; AL⊥(SCD).c, Tính diện tích tứ giác AKHL
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB là tam giác đều , SC =a căn 2. Gọi H là trung điểm AB
a) CM : BC vuông (SAB) và SH vuông (ABCD)
b) Gọi M là trung điểm CD , α là góc giữa đt SM và (ABCD) . Xác định α và tính tan α
c) Gọi K là trung điểm AD . CM AC vuông SK
Cho hình chóp S.ABCD , đáy ABCD là hình thang vuông tại A và D . SA vuông góc với (ABCD ) , AD=DC=AB/2=a , SA=a căn 3. Gọi I là trung điểm AB. CMR a. CI vuông góc (SAB ) , DI vuông góc (SAC) b. Các mặt bên hình chóp là những tam giác vuông