Lời giải:
Ta có:
\(S_{ABCD}=30^2=900\)
\(S_{AEH}=\frac{AE.AH}{2}=\frac{AE(AD-HD)}{2}=\frac{10(30-16)}{2}=70\)
\(S_{DHG}=\frac{DH.DG}{2}=\frac{DH(DC-GC)}{2}=\frac{16(30-14)}{2}=128\)
\(S_{CGF}=\frac{CG.CF}{2}=\frac{CG(BC-BF)}{2}=\frac{14(30-12)}{2}=126\)
\(S_{BEF}=\frac{BE.BF}{2}=\frac{(AB-AE)BF}{2}=\frac{(30-10).12}{2}=120\)
Do đó:
\(S_{EFGH}=S_{ABCD}-S_{AEH}-S_{DHG}-S_{CGF}-S_{BEF}\)
\(=900-70-128-126-120=456\)