\(\widehat{EBN}=\widehat{ECN}=45^o\)
=> đpcm
\(\widehat{EBN}=\widehat{ECN}=45^o\)
=> đpcm
Cho hình vuông ABCD cạnh a. Trên hai cạnh AD và CD lần lượt lấy các điểm M và N sao cho góc MBN = 45 độ. MB và BN cắt AC theo thứ tự tại E và F
a, C/m các tứ giác BENC và BFMA nội tiếp được trong một đường tròn
b, C/tỏ MEFN cũng là tứ giác nội tiếp
c, Gọi H là giao điểm của MF và NE, I là giao điểm BH và MN. Tính độ dài đoạn BI theo a
cho hình vuông ABCD có độ dài là a lấy M và N trên cạnh AC, DC sao cho góc MBN bằng 45 độ , BM,BN cắt AC tại E và F
a, chứng minh 3 tứ giác ABFM, BCNE, MEFN nội tiếp
cho hình vuông ABCD có độ dài là a lấy M và N trên cạnh AC, DC sao cho góc MBN bằng 45 độ , BM,BN cắt AC tại E và F
a, chứng minh 3 tứ giác ABFM, BCNE, MEFN nội tiếp
Cho đường tròn (O), dây AB. Các tiếp tuyến của đường tròn tại A và B cắt nha tại C. Trên dây AB lấy điểm E(EA>EB). Đường vuông góc với OE tại E cắt CA và CB theo thứ tự ở I và K. Chứng minh rằng
1) OAEI, OEBK là các tứ giác nội tiếp 3) AI = BK
2) OIK là tam giác cân 4) OICK là tứ giác nội tiếp
Cho tam giác ABC , lấy điểm D thay đổi nằm trên cạnh BC (D không trùng B và C).Trên tia AD lấy điểm P sao cho D nằm giữa A và P đồng thời DA.DP = DB.DC . Đường tròn T đi qua hai điểm A,D lần lượt cắt cạnh AB ,AC tại F và E . Chứng minh rằng : Tứ giác ABPC nội tiếp giúp mình với huhu
cho tứ giác ABCD nội tiếp nửa đường tròn , đường kính AD. hai đường chéo AC và BD cắt nhau tại E.kẻ EF vuông góc với AD tại F. gọi M là trung điểm của DE. cm tứ giác BCMF nội tiệp
Cho đt tâm O đường kính AB cố định. Điểm M di động trên (O) sao cho M không trùng với các điểm A và B. Lấy điểm C là điểm đối xứng của O qua A. Đt vuông góc với AB tại C cắt đt AM tại N. Đt BN cắt (O) tại điểm thứ 2 E. BM cắt CN tại F. Chứng minh: A là trọng tâm tam giác BNF khi và chỉ khi NF ngắn nhất