a: vecto OA+vecto OC=vecto 0
vecto OB+vecto OD=vecto 0
=>vecto OA+vecto OC+vecto OB+vecto OD=vecto 0
b: vecto MA+vecto MC=2 vecto MO
vecto MB+vecto MD=2 vecto MO
Do đó: vecto MA+vecto MC=vecto MB+vecto MD
a: vecto OA+vecto OC=vecto 0
vecto OB+vecto OD=vecto 0
=>vecto OA+vecto OC+vecto OB+vecto OD=vecto 0
b: vecto MA+vecto MC=2 vecto MO
vecto MB+vecto MD=2 vecto MO
Do đó: vecto MA+vecto MC=vecto MB+vecto MD
Câu 1: Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA,AB a) Chứng minh rằng: Vectơ AM+ Vectơ BN+ Vectơ CP= Vectơ 0
b) Chứng minh rằng Vectơ OA+ Vectơ OB+ Vectơ OC= Vectơ OM + Vectơ ON + Vectơ OP Với O bất kì
Cho hình bình hành ABCD tâm O chứng minh các vecto BD-BA=OC-OB Giúp mình với ạ
1. Cho hbh ABCD và một điểm M tuỳ ý. Cmr: vecto MA + MC= MB+MD
2. Cho tam giác ABC bên ngoài tam giác vẽ hbh ABIJ BCPQ CARS. Cmr: vecto RJ + IQ + PD= vecto 0
3. Cho 3 điểm O A B ko thẳng hàng. Với điều kiện nào vecto OA + OB nằm trên đường phân giác của góc AOB
Cho tam giác ABC. Gọi M, N, P là những điểm được xác định như sau :
\(\overrightarrow{MB}=3\overrightarrow{MC};\overrightarrow{NC}=3\overrightarrow{NA};\overrightarrow{PA}=3\overrightarrow{PB}\)
a) Chứng minh \(2\overrightarrow{OM}=3\overrightarrow{OC}-\overrightarrow{OB}\) với mọi điểm O
b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm
Cho hình chữ nhật ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.
a) Với điểm M tùy ý , hãy chứng minh :
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
b) Chứng minh rằng :
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)
Trong mặt phẳng (P) cho tam giác ABC. M là một điểm bất kì thuộc mặt phẳng (P). Chứng minh rằng biểu thức \(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M ?
Cho hình thoi ABCD tâm O có AC = 8; BD = 6. Chọn hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\) sao cho \(\overrightarrow{i}\) và \(\overrightarrow{OC}\) cùng hướng, \(\overrightarrow{j}\) và \(\overrightarrow{OB}\) cùng hướng.
a) Tìm tọa độ các đỉnh của hình thoi
b) Tìm tọa độ trung điểm I của BC và trọng tâm của tam giác ABC
c) Tìm tọa độ điểm đối xứng I' của I qua tâm O. Chứng minh A, I', D thẳng hàng
d) Tìm tọa độ của vectơ \(\overrightarrow{AC},\overrightarrow{BD},\overrightarrow{BC}\)
1. Cho hình chữ nhật ABCD có O là giao điểm 2 đường chéo. M,N lần lượt thuộc cạnh AD, AB sao cho MA = 3MD, NB=3NA. Biết \(\overrightarrow{MN}\)= a. \(\overrightarrow{OA}\)+b.\(\overrightarrow{OB}\), tổng a+b bằng?
2. Cho A (0;1), B(2;3);C(2;5); D(-1;1). Chọn mệnh đề đúng:
A. B,A,D thẳng hàng
B. B,A,C thẳng hàng
C. B,C,D thẳng hàng
D. A,C,D thẳng hàng
3. Cho tam giác ABC và M thay đổi thoả mãn:
|\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)| = 3
Biết M thuộc đường tròn. Tính diện tích đường tròn đó?
A. 9\(\pi\) B. 4\(\pi\) C. \(\pi\) D. 3\(\pi\)
Nhờ mọi người giải thích cho em cách làm với ạ. Em cảm ơn.
Cho tam giác đều ABCD nội tiếp trong đường tròn O. Hãy xác định các điểm M, N, P sao cho :
a) \(\overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{OB}\)
b) \(\overrightarrow{ON}=\overrightarrow{OB}+\overrightarrow{OC}\)
c) \(\overrightarrow{OP}=\overrightarrow{OC}+\overrightarrow{OA}\)
Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng :
\(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\)