cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
cho hình vuông ABCD có độ dài là a lấy M và N trên cạnh AC, DC sao cho góc MBN bằng 45 độ , BM,BN cắt AC tại E và F
a, chứng minh 3 tứ giác ABFM, BCNE, MEFN nội tiếp
cho hình vuông ABCD có độ dài là a lấy M và N trên cạnh AC, DC sao cho góc MBN bằng 45 độ , BM,BN cắt AC tại E và F
a, chứng minh 3 tứ giác ABFM, BCNE, MEFN nội tiếp
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
Cho tam giác ABC có góc A < 90 độ các đường cao AD và BE cắt nhau tại H (D thuộc BC, E thuộc AC). Chứng minh các tứ giác DHEC và ABDE nội tiếp đường tròn.
Cho tứ giác ABCD nội tiếp đường tròn (O; R) đường kính BD (AD > AB). Đường thẳng qua A vuông góc với BD tại N, cắt đường tròn (O) tại M. Dây cung BC cắt dây cung AM tại I.
a) Chứng minh rằng: Tứ giác NICD nội tiếp
b) Chứng minh BN.BD = BI.BC
c) Qua N kẻ đường thẳng song song với AC, cắt dây cung BC tại P. Đường thẳng NP cắt đường thẳng DC tại Q. Chứng minh tứ giác MPCQ là hình chữ nhật.
cho tứ giác ABCD nội tiếp đường tròn O, hai đường chéo AC và BD cắt nhau tại I. Vẽ đường tròn ngoại tiếp tam giác ABI. Tiếp tuyến của đường tròn này tại I cắt AC và AD lần lượt tại M và N. Chứng minh rằng:
a) MN//Cd
b) ABNM nội tiếp