a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DE/DC=DG/DA
nên GE//AC và GE=AC/2
=>MN//GE và MN=GE
Xét ΔABD có AM/AB=AG/AD
nên MG//BD và MG=BD/2
=>MG=AC/2=MN
Xét tứ giác MNEG có
MN//EG
MN=EG
MN=MG
Do đó:MNEG là hình thoi
b: Sửa đề; AC=15cm
MN=AC/2=7,5cm
GN=(AB+CD)/2=9cm
Gọi giao của GN và ME là F
=>F là trung điểm chung của GN và ME và ME vuông góc với GN tại F
=>FN=GN/2=4,5cm
=>MF=6cm
MF=căn(7,5^2-6^2)=4,5cm
=>ME=9cm
\(S_{MNEG}=\dfrac{1}{2}\cdot9\cdot9=40.5\left(cm^2\right)\)