Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC).
a, Biết AB=12cm, BC=20cm. Tính AC, AM, góc ABC.
b, Kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM AN.AC=AC^2 - HC^2.
c, CM AH=MN, AM.MB+AN.NC=AH^2.
d, CM tan^3C=BM/CN.
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC).
a, Biết AB=12cm, BC=20cm. Tính AC, AM, góc ABC.
b, Kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM AN.AC=AC^2 - HC^2.
c, CM AH=MN, AM.MB+AN.NC=AH^2.
d, CM tan^3C=BM/CN.
mk cần phần d ak, cảm ơn trước!
Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
Cho hình thang cân ABCD có AB song song với BC và AD =2CD=2BC.Chứng minh rằng 4 bốn điểm A,B,C,D cùng nằm trên một đường tròn tâm O và AC⊥OB
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho tam giác ABC vuông tại A (AB < AC).Đường tròn tâm O,đường kính AB và đường tròn tâm K,đường kính KC cắt nhau tại D (khác A)
a.Chứng minh B,C,D thẳng hàng
b.Chứng minh OD là tiếp tuyến của (K)
KD là tiếp tuyến của (O)
Cho đường tròn (O), dây AB=24cm, dây AC=20cm, BAC < 90 độ và điểm O nằm trong
tam giác ABC. Gọi M là trung điểm AC. Khoảng cách từ M đến AB bằng 8cm.
a. Chứng minh tam giác ABC cân tại C
b. Tính bán kính đường tròn.