Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC. D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD ?
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow{MA}.\overrightarrow{MC}=\overrightarrow{MB}.\overrightarrow{MD}\) ?
Trong mặt phẳng xoy cho A (4;6) B(1;4) C(7;3/2) a tính độ dài các cạnh AB AC và BC của tam giác ABC B tính góc giữa hai vec tơ (AB BC) C chứng minh rằng tam giác ABC vuông tại A
Trong mặt phẳng với hệ tọa độ Đê - các vuông góc Oxy cho tam giác ABC có AB = AC; \(\widehat{BAC}=90^0\); biết M (1;-1) là trung điểm cạnh BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C
Bài 1: Cho tam giác đều ABC cạnh a, trọng tâm G
a) Tính vecto AB. AC và vecto AB.BC
b) Gọi I là điểm thỏa mãn vecto IA-2IB+4IC = 0. Chứng minh rằng : BCIG là hình bình hành. Từ đó tính vecto IA. ( AB+ AC) và vecto IB.IC ; vecto IA.IB
Bài 2 : Cho tam giác ABC vuông cân ở A. Tính góc giữa hai đường trung tuyến BE, CF
cho tam giác abc cân tại a nội tiếp đường tròn. d là trung điểm ab e là trọng tâm acd.chứng minh oe vuông góc cd
cho tam giác ABC có BC=a;CA=b.AB=c.tính cosin của góc xen giữa 2 vectow AG và BC
Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm A( 2;1), B(4;0), C(2; 3).
a) Tìm tọa độ trọng tâm G của tam giác ABC và trung điểm I của cạnh AB.
b) Cho D (m ; 2). Tìm m để ba điểm A, B, D thẳng hàng.
c) Tính cos của góc B trong tam giác ABC.
Trong mặt phẳng tọa độ Oxy, cho 3 điểm có A(-3;-2); B(3;6); C(11;0). Tìm tọa độ điểm D để tứ giác ABCD là hình vuông