Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Thiên Thành

Cho hình thang ABCD (Góc A= góc D =90°). Gọi E là trung điểm của AD. Kẻ AH vuông góc với BE, DI vuông góc CE, K là giao điểm AH và DI. Cm:

a) BHIC nội tiếp.

b) EK vuông góc BC

Mọi người giúp em bài này với ạ. Em cảm ơn nhiều.

Kim So Hyun
8 tháng 3 2020 lúc 23:18

A B D C E H I K S

Gọi giao điểm EK và BC là S.

a) Xét ΔEAB có:

\(\widehat{EAB}\) \(=90^0\)

\(AH\perp EB\)

\(\Rightarrow\) Áp dụng hệ thức lượng trong tam giác vuông

\(\Rightarrow AE^2=EH\cdot EB\) (3)

Xét ΔEDC có:

\(\widehat{EDC}\) \(=90^0\)

\(DI\perp EC\)

\(\Rightarrow\) Áp dụng hệ thức lượng trong tam giác vuông

\(\Rightarrow ED^2=EI\cdot EC\) (4)

Vì E là trung điểm AD

\(\Rightarrow AE=ED\) \(\Leftrightarrow AE^2=ED^2\) (5)

Từ (3),(4) và (5) \(\Rightarrow EI\cdot EC=EH\cdot EB\)

\(\Leftrightarrow\frac{EI}{EB}=\frac{EH}{EC}\)

Xét ΔEIH∼ΔEBC vì:

\(\widehat{CEB}:chung\)

\(\frac{EI}{EB}=\frac{EH}{EC}\)

\(\Rightarrow\) \(\widehat{EHI}=\widehat{ECB}\) hay \(\widehat{EHI}=\widehat{ICB}\)

\(\Rightarrow\) Tứ giác IHBC nội tiếp đường tròn (theo dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{HIE}=\widehat{EBC}\) hay \(\widehat{EBS}=\widehat{HIE}\)

b) Vì \(AH\perp EB\)

\(\Rightarrow\) \(\widehat{AHB}\) \(=90^0\)

\(\Rightarrow\) \(\widehat{EHI}\) \(=90^0\) (hai góc đối đỉnh) (1)

\(DI\perp EC\)

\(\Rightarrow\) \(\widehat{DIC}\) \(=90^0\)

\(\Rightarrow\) \(\widehat{EIK}\) \(=90^0\) (hai góc đối đỉnh) (2)

Cộng (1) và (2) \(\Rightarrow\) \(\widehat{EHK}+\widehat{EIK}\) \(=90^0+90^0=180^0\)

\(\Rightarrow\) Tứ giác EHKI nội tiếp đường tròn (theo dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{HEK}=\widehat{HIK}\) hay \(\widehat{BES}=\widehat{HIK}\)

Ta có: \(\widehat{HIK}+\widehat{EHK}=\widehat{EIK}\)

\(\Leftrightarrow\) \(\widehat{HIK}+\widehat{EHK}\) \(=90^0\)

(mà \(\widehat{BES}=\widehat{HIK};\widehat{EHK}=\widehat{EBS}\) )

\(\Leftrightarrow\) \(\widehat{BES}+\widehat{EBS}\) \(=90^0\)

\(\Rightarrow BS\perp ES\) hay \(EK\perp BC\) (đpcm)


Khách vãng lai đã xóa