Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
cho hình thang abcd (ab//cd) m là trung điểm ad n là trung điểm bc gọi h và k theo thứ tự giao điểm mn với.bd và ac cho biết cd=8cm mn=6cm a) tính độ dài 2 cạnh ab b) tính độ dài đoạn MH,HK,KN
Cho hình thang ABDC (AB // CD). Trên cạnh AD lấy điểm M và N sao cho AM= | MN=NC. Từ M và Nkẻ các đường thẳng song song với hai đáy cắt BC theo thứ tựE và F. Chứng
minh rằng: a. BE = EF = FD b. Cho CD= 8cm, ME= 6cm. Tính độ dài AB và FN
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Cho hình thang ABCD có đường trung bình EF song song với hai đáy là AB và CD.Cho biết EF=6cm và CD = 7cm.Tính độ dài cạch Ab
cho hình thang abcd ,có e và m là 2 điểm thuộc cạnh ad sao cho am=me=ed,có n và f là 2 điểm thuộc cạnh bc sao cho bn=nc=fc,biết ab-3,cd=15.tính độ dài mn và ef
Bài 1 : Cho hình thang ABCD (AB//CD) , M là trung điểm của AD , N là trung điểm của BC . Gọi P và Q theo thứ tự là giao điểm của MN với BD và AC . Biết CD = 8cm , MN = 6cm . Tính AB,MP,PQ, QN
Cho tứ giác ABCD, AB không song song với CD; M, N lần lượt là trung điểm của BC, AD. Chứng minh \(MN=\dfrac{AB+CD}{2}\)