Bài 3*: Cho hình thang ABCD(AB/CD) có CD=AD+BC. Gọi Mlà điểm thuoc đáy CD sao cho: MD-AD. Chung minh: a) AMlà tia phân giác của góc A b) Tam giác BCM cân c) BK là tia phân giác của góc
Cho hình thang ABCD ( AB//CD, AB<CD) hai tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB,CD lần lượt tại E và F
a) Tìm các hình thang
b) Chứng minh rằng tam giác BEI cân
Bài 1 : Cho hình thang ABCD (AB//CD) .Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD+BC= DC
Bài 2 : Cho ΔABC vuông cân tại A , ở phía ngoài ΔABC , vẽ Δ BCD vuông cân tại B . Tứ giác abcd là hình gì ? Vì sao ?
Cho hình thang ABCD (AB//CD), biết AD+BC=AB. Hai tia phân giác của hai góc C và D cắt nhau tại E. Chứng minh rằng 3 điểm A,B,E thẳng hàng.
(Không dùng tính chất hình thang cân và đường trung bình nha!)
Cho hình thang ABCD (AB//CD), biết AD+BC=AB. Hai tia phân giác của hai góc C và D cắt nhau tại E. Chứng minh rằng 3 điểm A,B,E thẳng hàng
(Không dùng tính chất hình thang cân và đường trung bình nha!)
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang ABCD có AB//CD các đường phân giác của các góc A và B cắt nhau tại điểm k thuộc cạnh CD các đường phân giác của các góc C và d cách nhau tại điểm I chứng minh AD + BC = CD chứng minh ia = ib