Giả sử cạnh của hình lập phương ABCD.A’B’C’D’ bằng 1. Khi đó, \(A'C' = B'D' = \sqrt 2 \)
Gọi E’ là giao điểm của hai đường chéo A’C’ và B’D’ của hình vuông A’B’C’D’. Khi đó, E’ là trung điểm của A’C’ và B’D’. Suy ra \(\overrightarrow {B'D'} = 2\overrightarrow {E'D'} \) và \(E'D' = \frac{{\sqrt 2 }}{2}\).
Gọi E là trung điểm của CC’. Mà E’ là trung điểm của A’C’ nên EE’ là đường trung bình của tam giác A’C’C. Do đó, \(\overrightarrow {A'C} = 2\overrightarrow {E'E} \) và \(E'E = \frac{1}{2}A'C\)
Áp dụng định lí Pythagore vào \(\Delta \)A’C’C vuông tại C’ có: \(A'C = \sqrt {A'C{'^2} + C'{C^2}} = \sqrt {2 + 1} = \sqrt 3 \)\( \Rightarrow E'E = \frac{{\sqrt 3 }}{2}\)
Áp dụng định lí Pythagore vào \(\Delta \)D’C’E vuông tại C’ có:
\(ED{'^2} = C'D{'^2} + C'{E^2} = 1 + \frac{1}{4} = \frac{5}{4}\)
Vì \(E'D{'^2} + E'{E^2} = \frac{1}{2} + \frac{3}{4} = \frac{5}{4} = ED{'^2}\) nên \(\Delta \)E’D’E vuông tại E’. Do đó, \(\overrightarrow {E'E} \bot \overrightarrow {E'D'} \)
Ta có: \(\overrightarrow {A'C} .\overrightarrow {B'D'} = 2.\overrightarrow {E'E} .2.\overrightarrow {E'D'} \)\( = 0\) (đpcm)