Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của A'B', N là trung điểm của BC
a) Tính thể tích khối tứ diện ADMN
b) Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H') là khối đa diện còn lại. Tính tỉ số \(\dfrac{V_{\left(H\right)}}{V_{\left(H'\right)}}\) ?
Hình được tạo thành từ hình lập phương ABCD.A'B'C'D' khi ta bỏ đi các điểm trong của mặt (ABCD) có phải là một hình đa diện không ?
Cho hình hộp ABCD.A'B'C'D'. Gọi E và F theo thứ tự là trung điểm của các cạnh BB' và DD'. Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó ?
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Gọi M, N và E theo thứ tự là trung điểm BC, CC' và C'A'. Đường thẳng EN cắt đường thẳng AC tại F, đường thẳng MN cắt đường thẳng B'C' tại L. Đường thẳng FM kéo dài cắt AB tại I, đường thẳng LE kéo dài cắt A'B' tại J
a) Chứng minh rằng các hình đa diện IBM.JB'L và A'EJ.AFI là những hình chóp cụt
b) Tính thể tích khối chóp F.AIJA'
c) Chứng minh rằng mặt phẳng (MNE) chia khối lăng trụ đã cho thành hai khối đa diện có thể tích bằng nhau
Cho khối hộp ABCD.A'B'C'D' có thể tích bằng V, I là giao điểm các đường chéo của nó. Mặt phẳng (P) đi qua I và cắt các cạnh bên của khối hộp chia khối hộp đó thành hai khối đa diện. Tính thể tích của mỗi khối đa diện đó theo V ?
Cho hai đường thẳng AB và CD chéo nhau, AC là đường vuông góc chung của chúng. Biết AC = h, AB = a, CD = b và góc giứa hai đường thẳng AB và CD bằng \(60^0\). Hãy tính thể tích của khối tứ diện ABCD ?
Cho khối tứ diện đều ABCD cạnh bằng a. Gọi A', B', C', D' lần lượt là trọng tâm của tam giác BCD, ADC, DAB, ABC
a) Chứng minh A'B'C'D' cũng là khối tứ diện đều
b) Tính \(V_{A'B'C'D'}\) theo a
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông ở B, AB = BC=AA'.
Hãy chia lăng trụ đó thành ba tứ diện bằng nhau ?
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a, hình chiếu vuông góc của S lên mặt phẳng đáy là điểm H sao cho :
\(\overrightarrow{AH}=\dfrac{1}{3}\overrightarrow{AC};SH=\dfrac{4}{3}a\)
a) Tính thể tích khối chóp S.ABCD
b) Gọi AI là đường cao của tam giác ASC. Chứng minh rằng I là trung điểm của SC và tính thể tích khối tứ diện ABSI ?