Cho hình chóp SABCD có đáy là hình vuông cạnh = a. SA vuông góc với (ABCD), SA=a. a)Chứng minh BC vuông góc với (SAB)? b)Gọi K là chân đường cao hạ từ A lên SD. Chứng minh (AKC) vuông góc với (SDC)?
Cho HLP ABCD.A'B'C'D' . Gọi M là trung điểm của AD . N là TĐ C'D' . Gọi \(\alpha\)
là góc giữa (BMN) và (ADD'A') . Tính cos \(\alpha\) ?
Cho hai tia Ax và By vuông góc với nhau nhận AB làm đoạn vuông góc chung. Gọi M và N là hai điểm di động lần lượt trên Ax và By sao cho AM + BN = MN
Đặt AB = 2a, gọi O là trung điểm của AB và H là hình chiếu vuông góc của điểm O trên đường thẳng MN
a) Chứng minh rằng OH = a, HM = AM, HN = BN
b) Gọi Bx' là tia song song và cùng chiều với tia Ax và K là hình chiếu vuông góc của H trên mặt phẳng (Bx',By). Chứng minh BK là phân giác của góc x'By ?
c) Chứng minh điểm H nằm trên một đường tròn cố định ?
Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh \(\left(SAC\right)\perp\left(SBH\right)\)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a√2; SA vuông góc (ABCD) và SA=2a . Gọi E là hình chiếu vuông góc của A trên cạnh SB .
4.1. Chứng minh BD ⊥ (SAC) .
4.2. Chứng minh BC ⊥ (SAB) và (AEC) ⊥ (SBC) .
4.3. Gọi G và K lần lượt là trọng tâm của các tam giác SAD và ACD Tính góc giữa đường thẳng GK và mặt phẳng (SAB) .
Hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a và có góc \(\widehat{BAD}=60^0\). Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và \(SO=\dfrac{3a}{4}\). Gọi E là trung điểm của đoạn BC, F là trung điểm của BE
a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC)
b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC)
Câu 2. Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a và các góc ABC = B'BA = B'BC = 60o. Chứng minh tứ giác A'B'CD là hình vuông.
Câu 3. Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a và các góc BAD, DAA' , A'AB đều bằng 60o . Gọi M, N lần lượt là trung điểm của AA' , CD. Gọi α là góc tạo bởi hai đường thẳng MN và B'C. Tính cos α
Câu 4. Cho hình chóp S.ABCD, có đáy ABCD là hình vuông tâm O, cạnh bằng a; SA vuông góc với đáy và SA = a√3. Khi đó, cosin góc giữa SB và AC bằng
Hình chóp A.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA bằng a và vuông góc với mặt phẳng (ABCD)
a) Chứng minh rằng các mặt bên kia của hình chóp là những tam giác vuông
b) Mặt phẳng \(\left(\alpha\right)\) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, SC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB