Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo ( không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.
a) Chứng minh rằng tứ giác BMND là hình bình hành.
b) Với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật.
c) Chứng minh 3 điểm M, C, N thẳng hàng.
cho hình bình hành ABCD , trên đường chéo BD lấy điểm M và N sao cho BN = DM .
a) chứng minh tứ giác AMCN là hình bình hành
b) Hình bình hành ABCD có điều kiện gì để AMCN là hình thoi ?
c) gọi H là giao điểm AN và CD . Xác định vị trí của đỉnh N trên PD , để N là trung điểm của CD
giúp mình với ạ
bài 1:Cho hình bình hành ABCD có BC=2AB.Gọi M,N thứ tự là trung điểm của BC và AD.Gọi P là giao điểm của AM với BN,Q là giao điểm của MD với CN,K là giao điểm của tia BN với tia CD
a)chứng minh tứ giác MDKB là hình thang?
b)tứ giác PMQN là hình gì?chứng minh?
c)hình bình hành ABCD có thêm điều kiện gì thì PMQN là hình vuông?
bài 2:Cho hình bình hành ABCD có AB=2AD.gọi E,F theo thứ tự là trung điểm của AB và CD.
a)chứng minh tứ giác AECF là hình bình hành?
b)Gọi M là giao điểm của AF va DE.N là giao điểm của BF và CE.Chứng minh tứ giác EMFN là hình chữ nhật?
c)Hình bình hành ABCD có thêm điều kiệm gì thì EMFN là hình vuông?
bài 1: Cho tam giác ABC gọi D là điểm nằm giữa B và C, qua D vẽ DE // BC và DF // AC
a/ chứng minh tứ giác AEDF là hình bình hành.
b/ Khi nào thì hình bình hành AEDF là hình thoi, hình vuông.
bài 2: cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm AC, K đối xứng với M qua I.
a/ chứng minh AMCK là hình chữ nhật.
b/ điều kiện của tam giác ABC để AMCK là hình vuông.
bài 3: Cho hình thoi ABCD, O là giao điểm hai đường chéo. Qua B vẽ đường thẳng song song với AC, qua C vẽ đường thẳng song song với BD, hai đường thẳng đó cắt nhau tại K.
a/ chứng kinh OBKC là hình vuông.
b/ chứng minh AB = OK.
c/ điều kiện của tứ giác ABCD để OBKC là hình vuông.
```````````` Giúp mk phần b bài 1 và bài 2, phần c bài 3 `````````````````
Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N, P, Q theo thứ tự là giao điểm các đường phân giác của tam giác OAB, OBC, OCD, ODA.
a) Chứng minh tứ giác MNPQ là hình thoi.b) Nếu tứ giác ABCD là hình thoi thì tứ giác MNPQ là hình gì ? Vì sao ?bạn nào giúp mình với mình bị bí bài này mất rồi mình cần gấp cảm ơn các bạn nhiều ạ ( làm chi tiết giúp mình nha )Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N, P, Q theo thứ tự là giao điểm các đường phân giác của tam giác OAB, OBC, OCD, ODA.
a) Chứng minh tứ giác MNPQ là hình thoi.b) Nếu tứ giác ABCD là hình thoi thì tứ giác MNPQ là hình gì ? Vì sao ?bạn nào giúp mình với mình bị bí bài này mất rồi mình cần gấp cảm ơn các bạn nhiều ạ ( làm chi tiết giúp mình nha )Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N, P, Q theo thứ tự là giao điểm các đường phân giác của tam giác OAB, OBC, OCD, ODA.
a) Chứng minh tứ giác MNPQ là hình thoi.b) Nếu tứ giác ABCD là hình thoi thì tứ giác MNPQ là hình gì ? Vì sao ?bạn nào giúp mình với mình bị bí bài này mất rồi mình cần gấp cảm ơn các bạn nhiều ạ ( làm chi tiết giúp mình nha )Chứng minh rằng các đường phân giác trong của một hình bình hành giao nhau tại các điểm là những đỉnh của một hình chữ nhật, hình chữ nhật này có đường chéo bằng hiệu hai cạnh liên tiếp của hình bình hành đó.
Mọi người giải giúp mình nha. Arigatou
Chop tứ giác ABCD . Goin O là giao điểm của 2 đường chéo ( không vuông góc) , I và K lần lượt là trung điểm của BC và CD . Gọi M và N theo thứ tự là ddiemr dối xứng của điểm O qua tâm I và K
a) c/m Tứ giác BMND là hình bình hành
b) c/m : với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật
c) c/m : 3 điểm M,C,N thẳng hàng