Lời giải:
1.
$\overrightarrow{2AO}-\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AB}$
Độ dài: $|\overrightarrow{AB}|=a$
2.
Trên tia đối của $AC$ lấy $T$ sao cho $TA=OC$
Trên tia đối của $BA$ lấy $K$ sao cho $BA=BK$
$\overrightarrow{OC}+2\overrightarrow{AB}=\overrightarrow{TA}+\overrightarrow{AB}+\overrightarrow{AB}$
$=\overrightarrow{TB}+\overrightarrow{AB}$
$=\overrightarrow{TB}+\overrightarrow{BK}=\overrightarrow{TK}$
Ta có:
$TC=3OC=\frac{3}{2}AC=\frac{3}{2}\sqrt{(2a)^2+a^2}=\frac{3\sqrt{5}}{2}a$
$CK=\sqrt{BC^2+BK^2}=\sqrt{(2a)^2+a^2}=\sqrt{5}a$
$\cos \widehat{TCK}=\cos 2\widehat{TCB}=2\cos^2 \widehat{TCB}-1$
$=2(\frac{CB}{AC})^2-1=\frac{3}{5}$
Áp dụng định lý cos:
$TK^2=TC^2+CK^2-2TC.CK\cos \widehat{TCK}$
$=\frac{45}{4}a^2+5a^2-9a^2=\frac{29}{4}a^2$
$\Rightarrow TK=\frac{\sqrt{29}}{2}a$
3. Trên tia đối tia $CD$ lấy $M$ sao cho $CM=CD$
$3\overrightarrow{AB}+2\overrightarrow{OD}=3\overrightarrow{DC}+2\overrightarrow{OD}=2\overrightarrow{OC}+\overrightarrow{DC}$
$=\overrightarrow{AC}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AM}$
$AM=\sqrt{AD^2+DM^2}=\sqrt{(2a)^2+(2a)^2}=2\sqrt{2}a$