Bài 16. Đường trung bình của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.

Hà Quang Minh
13 tháng 1 2024 lúc 11:40

Vì ABCD là hình chữ nhật nên \(\widehat {BA{\rm{D}}} = {90^o}\) và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.

Suy ra AB ⊥ AD; O là trung điểm của AC và BD.

Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.

Suy ra OH // AD mà AB ⊥ AD nên OH ⊥ AB hay \(\widehat {AHO} = {90^o}\)

Tương tự, ta chứng minh được: OK ⊥ AD hay \(\widehat {AK{\rm{O}}} = {90^o}\).

Ta có: \(\widehat {BA{\rm{D}}} + \widehat {AHO} + \widehat {AK{\rm{O}}} + \widehat {HOK} = {360^o}\)

90°+90°+90°+\(\widehat {HOK}\)=360°

270°+\(\widehat {HOK}\)=360°

Suy ra \(\widehat {HOK}\)=360°−270°=90°

Tứ giác AHOK có \(\widehat {BA{\rm{D}}}\)=90°;ˆAHO=90°; \(\widehat {AHO}\)=90°;\(\widehat {AK{\rm{O}}}\)=90o

Do đó, tứ giác AHOK là hình chữ nhật.


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết