a: BD=10cm
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
c: Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
a: BD=10cm
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
c: Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
Cho tam giác nhọn ABC có góc C = 40 độ. Vẽ hình bình hành ABCD. Gọi AH, AK theo thứ tự là các đường cao của các tam giác ABC, ACD
a) Chứng minh rằng tam giác AKH đồng dạng với tam giác BCA
b) Tính số đo góc AKH
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm a) Tính BC b) Vẽ đường cao AH. Chứng minh tam giác ABC đồng dạng tam giác HBA c) Tính HB,HC
Bài 1 . Cho hình chữ nhật ABCD có AB = 8 cm , BC = 6 cm . gọi H là hình chiếu của A trên BD.
A. Chứng minh tam giác AHB đồng dạng với tam giác BCD ; tam giác AHD đồng dạng với tam giác DCB.
B.tính BD , AH
C. AH cắt DC tại K . tính diện tích tam giác DHK
Cho tam giác ABC có AB=15, AC=8,BC=100.Trên tia AB đặt E sao cho AE=20.Qua E vẽ 1 tia cắt AC tại D sao cho góc AED=góc ACB 1/Cmr tam giác ADE đồng dạng với tam giác ABC
2/ tính các cạnh còn lại của tam giác ADE
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh ABC đồng dạng với HBA và AB2 = BH.BC
b) Chứng minh.tam giác HAB đồng dạng với tam giác HCA, từ đó hãy tính AH nếu HC=9cm và HB=4cm
c) Tia phân giác của góc ABC cắt AH, AC theo thứ tự tại M và N.
tam giác abc vuông tại a ( ab< ac ) qua điểm e bất kì trên cạnh ac kẻ đường thẳng vuông góc với bc tại i cắt ab tại f
a, c/m tam giác cie đồng dạng với tam giác cab
b, c/m af.ec = ef.ic
c/m tam giác aei và tam giác cef đồng dạng
mình đang cần gấp giúp mình nhanh nha
Cho tam giác ABC vuông tại A có AB =12cm , AC=16cm . Vẽ đường cao AH a, chứng minh tam giác HBA đồng dang với tam giác ABC b, Tính BC,BH c, tính diện tích tam giác ABC
Cho Δ ABC có AB = 8cm,AC = 6cm,BC = 10cm. Tam giác A'B'C' đồng dạng với tam giác ABC có độ dài cạnh lớn nhất là 25 cm. Tính chu vi Δ A'B'C
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HCA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ