Cho hình chữ Nhật có AB=48cm , AD=32cm . Gọi M là trung điểm AB , DM cắt AC ở ai và cắt BC ở K
a)Tính AC và góc ADB
b) Tính DI
c) CM:IM.IK=ID^2
d)Kẻ phân giác PQ của góc DBC ( Q thuộc DC) .CM:tan góc QBC =\(\frac{CD}{BC+BD}\)
Cho tam giác ABC vuông tại A có đường cao là ah HP = 9 cm HC = 16 cm
a)tính AB AC ah
b)Gọi D và E lần lượt là hình chiếu vuông góc của h trên AB và AC. tứ giác AD he là hình gì
Cho tam giác ABC vuông tại A, đường cao AH
a) Tính góc B, biết AH = 3, AB=2
b) AD là phân giác góc HAC, Từ D kẻ DK vuông góc BC cắt AC tại K. Chứng minh rằng BK là phân giác của góc ABC
c) Từ D kẻ DM vuông góc AC, CM/CK =(cosC)²
d) BK //HM
4) cho tam giác ABC có AB = 6cm , AC = 4,5 cm , BC = 7,5 cm . a) C.minh tam giác ABC là hình vuông . b) tính góc B và góc C và đường cao AH . c) lây M bất kì trên cạnh BC . Gọi hình chiếu của M trên AB , AC . Lần lượt là P và Q . C.minh PQ , AM , hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB, AC. Tứ giác AEDF là hình gì? Tính chu vi và diện tích của tứ giác AEDF.
Cho hình chữ nhật ABCD. Đường cao phân giác của góc B cắt đường chéo AC thành hai đoạn \(4\dfrac{2}{7}cm\) và \(5\dfrac{5}{7}m\). Tính các kích thước của hình chữ nhật ?
cho tam giác ABC vuông tại A (AB < AC) kẻ đường cao AH gọi E, N, M lần lượt là trung điểm của AB AC BC .
a) CM : HE vuông góc với HN
b) từ A kẻ đường thẳng song song với BC cắt ME , MN lần lượt ở K , F . CM : AMBK là hình thoi
CẦN GẤP Ạ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC )
a , chứng minh AH^2 trên AC^2 = HB trên HC
b, AH^3= BD.CE.BC
Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N
a, CM : tam giác DMN cân
b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm M trên AB
Bài 3 ; cho tam giác ABC vuông tại A , đường cao AH. từ B kẻ đường thẳng vuông góc với AB và cắt tia AH tại D
a, CM ; \(AB^2 / AD^2= HC /BC\)
b, CM ;\(1/ AB^2 + 1/ BD^2 = 1/ HD. HA\)
c, cho AB = 30cm , AH= 24cm. tính BH, BC ,BD
Bài 4 HÌnh vuông ABCD , điểm M bất kì trên cạnh BC, AM cắt đường thẳng CD tại E . Trên tia đối của tia DC lấy điểm N sao cho DN= BM
a, CM; AM vuông góc AN
b, CM; \( 1/ Am^2+1/AE^2=1/BC^2\)