Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Gọi M là trung điểm của OD. Tính khoảng cách từ M đến (SAB).
A. \(\dfrac{a}{\sqrt{6}}\)
B. \(\dfrac{a\sqrt{6}}{4}\)
C. \(\dfrac{a\sqrt{3}}{2}\)
D. \(\dfrac{a\sqrt{2}}{3}\)
Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Gọi M là trung điểm của OD. Tính khoảng cách từ M đến (SAB).
A. \(\dfrac{a}{\sqrt{6}}\)
B. \(\dfrac{a\sqrt{6}}{4}\)
C. \(\dfrac{a\sqrt{3}}{2}\)
D. \(\dfrac{a\sqrt{2}}{3}\)
Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Tính khoảng cách giữa BD và SA.
A. \(\dfrac{a}{\sqrt{6}}\)
B. \(\dfrac{a}{3}\)
C. \(\dfrac{a\sqrt{2}}{3}\)
D. \(\dfrac{a}{2}\)
Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Tính khoảng cách giữa BD và SA.
A. \(\dfrac{a\sqrt{2}}{3}\)
B. \(\dfrac{a}{2}\)
C. \(\dfrac{a}{\sqrt{6}}\)
D. \(\dfrac{a}{3}\)
Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Tính khoảng cách giữa BD và SA.
A. \(\dfrac{a\sqrt{2}}{3}\)
B. \(\dfrac{a}{2}\)
C. \(\dfrac{a}{\sqrt{6}}\)
D. \(\dfrac{a}{3}\)
Cho hình chóp tứ giác đều S.ABCD , cạnh đáy bằng a , cạnh bên bằng \(\dfrac{a\sqrt{5}}{2}\). H là giao điểm AC và BD.
a) chứng minh: \(\left(SAC\right)\perp\left(SBD\right)\)
b) tính khoảng cách giữa 2 đường thẳng AC và SB
Cho tứ diện ABCD, có \(\widehat{BAC}=90^0,\widehat{CAD}=60^0,\widehat{BAD}=120^0;AB=AC=AD=a\). Tính khoảng cách từ B đến (ACD).
A. \(\dfrac{a\sqrt{6}}{3}\)
B. \(\dfrac{a\sqrt{3}}{2}\)
C. \(\dfrac{a\sqrt{6}}{2}\)
D. \(\dfrac{a\sqrt{3}}{4}\)
Cho tứ diện ABCD, có \(\widehat{BAC}=90^0,\widehat{CAD}=60^0,\widehat{BAD}=120^0;AB=AC=AD=a\). Tính khoảng cách từ B đến (ACD).
A. \(\dfrac{a\sqrt{6}}{3}\)
B. \(\dfrac{a\sqrt{3}}{2}\)
C. \(\dfrac{a\sqrt{6}}{2}\)
D. \(\dfrac{a\sqrt{3}}{4}\)
Cho hình chóp S.ABC, có \(\widehat{ASB\: =}90^0,\widehat{BSC}=60^0,\widehat{CSA}=120^0,SC=a\sqrt{2}.\) Tính khoảng cách từ C đến (SAB).
A. \(\dfrac{a}{4}\)
B. a
C. \(\dfrac{a}{2}\)
D. \(\dfrac{3a}{2}\)