Bài 4. Khoảng cách trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình vuông cạnh \(a\). Cho biết \(SA = a\) và \(SA\) vuông góc với \(\left( {ABCD} \right)\).

a) Tính khoảng cách từ điểm \(B\) đến \(\left( {SAD} \right)\).

b) Tính khoảng cách từ điểm \(A\) đến cạnh \(SC\).

Hà Quang Minh
22 tháng 9 2023 lúc 15:11

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow AB \bot \left( {SA{\rm{D}}} \right)\\ \Rightarrow d\left( {B,\left( {SA{\rm{D}}} \right)} \right) = AB = a\end{array}\)

b) Kẻ \(AH \bot SC \Rightarrow d\left( {A,SC} \right) = AH\)

Tam giác \(ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

Tam giác \(SAC\) vuông tại \(A\)\( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}}  = a\sqrt 3 \)

Tam giác \(SAC\) vuông tại \(A\) có đường cao \(AH\)\( \Rightarrow AH = \frac{{SA.AC}}{{SC}} = \frac{{a\sqrt 6 }}{3}\)

Vậy \(d\left( {A,SC} \right) = \frac{{a\sqrt 6 }}{3}\).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết