Bài 3: Đường thẳng vuông góc với mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Anh

Cho hình chóp S.ABCD, đáy ABCD là hình vuông; SA\(\perp\)(ABCD).

a, Chứng minh các \(\Delta SBC,SDC\) là các \(\Delta\) vuông.

b, Từ A kẻ AH\(\perp\)SB, AK\(\perp\)SC, AI\(\perp\)SD. Chứng minh 3 đường thẳng AH, AK, AI đồng phẳng.

c, Chứng minh HI\(\perp\)AK

d, Biết \(AB=a,SA=a\sqrt{2}\). Tính \(S_{AHKI}\) theo a

a: BC\(\perp\)BA(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

BA,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

=>BC\(\perp\)SB

=>ΔSBC vuông tại B

Ta có: CD\(\perp\)AD(ABCD là hình vuông)

CD\(\perp\)SA(SA\(\perp\)(ABCD))

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>CD\(\perp\)SD

=>ΔSDC vuông tại D

b: Ta có: AH\(\perp\)SB

AH\(\perp\)BC(BC\(\perp\)(SAB))

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

=>AH\(\perp\)SC

CD\(\perp\)(SAD)

AI\(\subset\)(SAD)

Do đó: CD\(\perp\)AI

mà AI\(\perp\)SD

và SD,CD cùng thuộc mp(CSD)

nên AI\(\perp\)(SCD)

=>AI\(\perp\)SC

Ta có: AI\(\perp\)SC

AK\(\perp\)SC

AH\(\perp\)SC

=>AI,AK,AH đồng phẳng

c: Xét ΔSAB vuông tại A và ΔSAD vuông tại A có

SA chung

AB=AD

Do đó: ΔSAB=ΔSAD

=>\(\widehat{BSA}=\widehat{DSA}\); SB=SD

Xét ΔSHA vuông tại H và ΔSIA vuông tại I có

SA chung

\(\widehat{HSA}=\widehat{ISA}\)

Do đó: ΔSHA=ΔSIA

=>SH=SI

Xét ΔSBD có \(\dfrac{SH}{SB}=\dfrac{SI}{SD}\)

nên HI//BD

BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó:BD\(\perp\)(SAC)

mà HI//BD

nên HI\(\perp\)(SAC)

mà AK\(\subset\)(SAC)

nên HI\(\perp\)AK


Các câu hỏi tương tự
Lê Tiến Đạt
Xem chi tiết
Nguyễn Quyết Chiến
Xem chi tiết
Crackinh
Xem chi tiết
Mai Anh
Xem chi tiết
An Sơ Hạ
Xem chi tiết
An Sơ Hạ
Xem chi tiết
Quỳnh Anh
Xem chi tiết
2003
Xem chi tiết
Alayna
Xem chi tiết