Cho hình chóp SABCD. Đáy ABCD là hình bình hành. M là trọng tâm tam giác SAB, N là trung điểm SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao tuyến của (SAD) và (SBC).
c) Tìm giao điểm của MN và (ABCD). d) Tìm I là giao điểm của SM và (ABCD).
e) F là giao điểm của CI và BD. Chứng minh rằng: MF// (SAD).
Cho chóp S.ABCD đáy là hình bình hành tâm O. M là điểm trên cạnh SD sao cho SD = 3SM.
a) Tìm giao tuyến (SAC) và (SBD); (SAB) và (SCD)
b) Tìm giao điểm I của BM và (SAC) . Chứng tỏ I là trung điểm của SO
CHO HÌNH CHÓP SABCD CÓ ĐÁY ABCD LÀ HÌNH BÌNH HÀNH . GỌI M N E LẦN LƯỢT LÀ TRUNG ĐIỂM SA ; SD ; BC .
A/ TÌM GIAO TUYẾN (MBC) VÀ (SAD).
B/ TÌM GIAO ĐIỂM BM VÀ (SAC).
C/ CHỨNG MINH MN// (SBC).
D/NE // (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N là trung điểm của SB và SD,P thuộc SC sao cho PC<PS. Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(MNP) và (SBD)
c,(MNP) và (SAC)
d,(MNP) và (SAB)
e,(MNP) và (SAD)
f,(MNP) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho hình chóp SABCD, đáy ABCD là hình bình hành có tâm O và M,N là lần lượt là trung điểm SB,SC.
1/ Tìm giao tuyến (SAC) với (SBD) và (SAB) với (SCD)
2/ Chứng minh ADNM là hình thang và MO // (SAD)
3/ Gọi K là giao điểm của AN và DM. Chứng minh ba điểm S,O,K thẳng hàng
4/ Gọi E trên đường chéo AC sao cho AE=2EC. Chứng minh KE // (SBC)
Chóp SABCD có đáy ABCD là hình bình hành. Lấy G, H, K lần lượt là trọng tâm các tam giác SAB, SAD, BCD. Tìm giao tuyến của (GHK) và (SCD)
Chóp SABCD có đáy ABCD là hình bình hành. Lấy G, H, K lần lượt là trọng tâm các tam giác SAB, SAD, BCD. Tìm giao tuyến của (CGH) và (ABK)
Cho hình chóp SABCD, có đáy ABCD là một hình bình hành tâm O.
Gọi I, K lần lượt là trung điểm của SB và SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao điểm J của SA với (CKB).
c) Tìm giao tuyến của (OIA) và (SCD)