Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng:

a) MN // (SCD);

b) DM // (SBC);

c) Lấy điểm I thuộc cạnh SD sao cho`(SI)/(SD)=2/3`.Chứng minh rằng: SB // (AIC).

Quoc Tran Anh Le
22 tháng 8 2023 lúc 18:20

a) △SAB có: M, N là trung điểm của SA, SB nên MN // AB 

Mà AB // CD

Suy ra MN // CD mà CD thuộc (SCD)

Do đó: MN // (SCD) 

b) Ta có: MN = \(\dfrac{1}{2}\) AB 

Mà CD = \(\dfrac{1}{2}\) AB 

Suy ra: MN = CD mà MN // CD 

Nên MNCD là hình bình hành. Do đó MD // CN 

Mà CN thuộc (SBC) 

Suy ra: DM // (SBC).

c) Gọi G là giao điểm của DM và AI; H là trung điểm của AB; O là giao điểm của AC và DH

Ta có: AHCD là hình bình hành vì AH // CD, AH = CD

Do đó: O là trung điểm của AC và DH

Ta chứng minh được G là trung điểm của DM

△DMH có: G, O là trung điểm của DM, DH

Suy ra: GO // MH

Mà MH // SB (M, H là trung điểm của SA, AB)

Do đó: GO // SB mà GO thuộc (AIC) nên SB // (AIC). 


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết