Bài tập cuối chương 4

Bài 1 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Bài 2 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Bài 3 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Bài 4 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Bài 5 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Hướng dẫn giải

a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)

Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD). 

b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP) 

Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).

c) Ta có: P thuộc (MNP) và (ACD)

Q thuộc (MNP) và (ACD)

Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP). 

d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)

Suy ra: PG // CN 

Do đó: △PIG đồng dạng với △NIC

Do đó: C, I, G thẳng hàng. 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 6 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Hướng dẫn giải

a) Ta có: AM cắt CD tại E nên E thuộc (AMN) và (SCD)

Mà N thuộc (AMN) và (SCD)

Do đó: EN là giao tuyến của hai mặt phẳng cần tìm. 

b) Ta có: En cắt SC tại F nên F thuộc (AMN) và (SBC) 

Mà M thuộc (AMN) và (SBC) 

Do đó: FM là giao tuyến của hai mặt phẳng cần tìm. 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Hướng dẫn giải

a) △SAB có: M, N là trung điểm của SA, SB nên MN // AB 

Mà AB // CD

Suy ra MN // CD mà CD thuộc (SCD)

Do đó: MN // (SCD) 

b) Ta có: MN = \(\dfrac{1}{2}\) AB 

Mà CD = \(\dfrac{1}{2}\) AB 

Suy ra: MN = CD mà MN // CD 

Nên MNCD là hình bình hành. Do đó MD // CN 

Mà CN thuộc (SBC) 

Suy ra: DM // (SBC).

c) Gọi G là giao điểm của DM và AI; H là trung điểm của AB; O là giao điểm của AC và DH

Ta có: AHCD là hình bình hành vì AH // CD, AH = CD

Do đó: O là trung điểm của AC và DH

Ta chứng minh được G là trung điểm của DM

△DMH có: G, O là trung điểm của DM, DH

Suy ra: GO // MH

Mà MH // SB (M, H là trung điểm của SA, AB)

Do đó: GO // SB mà GO thuộc (AIC) nên SB // (AIC). 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 8 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Hướng dẫn giải

a) Ta có: MBM'C' là hình bình hành nên C'M // BM'

Mà BM' thuộc (A'BM') 

Suy ra: C'M // (A'BM')

b) △A'BM' có: \(\dfrac{A'K}{A'B}=\dfrac{A'G'}{A'M'}=\dfrac{2}{3}\)

Nên G'K // BM' mà BM' thuộc (BCC'B')

Suy ra: G'K // (BCC'B')

c) Hình bình hành AMM'A' có: GG' // MM'

Mà MM' thuộc (BCC'B')

Suy ra: GG' // (BCC'B')

Mà G'K // (BCC'B')

Do đó: (GG'K) // (BCC'B')

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (2)

Bài 9 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Hướng dẫn giải


a)

Ta có: (ADD’A’) // (CBC’B’);

           (ADD’A’) ∩ (DCB’A’) = A’D;

           (CBC’B’) ∩ (DCB’A’) = B’C.

Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).

Tương tự: (ABB’A’) // (DCC’D’);

                 (ABB’A’) ∩ (DMB’N) = MB’;

                 (DCC’D’) ∩ (DMB’N) = DN.

Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).

Ta có: A’D // (B’CM);

           DN // (B’CM);

           A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)

Do đó (A’DN) // (B’CM).

b)

 Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.

Trong mp(BDD’B’), D’B cắt DJ tại E.

Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).

Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.

Trong mp(BDD’B’), D’B cắt B’I tại F.

Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).

• Ta có: (A’DN) // (B’CM);

              (A’DN) ∩ (BDD’B’) = DJ;

              (B’CM) ∩ (BDD’B’) = B’I.

Do đó DJ // B’I.

Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: \(\frac{{BI}}{{BD}} = \frac{{BF}}{{BE}}\) (1)

Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.

Xét ∆ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3}\)  hay \(\frac{{BI}}{{\frac{1}{2}BD}} = \frac{{2BI}}{{BD}} = \frac{2}{3}\)

Do đó \(\frac{{BI}}{{BD}} = \frac{1}{3}\) (2)

Từ (1) và (2) suy ra \(\frac{{BF}}{{BE}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\) hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\).

Chứng minh tương tự ta cũng có \(\frac{{D'E}}{{D'F}} = \frac{{D'J}}{{D'B'}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\)  hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\)

Do đó \(\frac{{BF}}{{EF}} = \frac{{D'E}}{{EF}} = \frac{1}{2}\) nên BF = D’E = ½ EF.

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 10 (trang 120 SGK Toán 11 tập 1 - Cánh Diều)

Hướng dẫn giải


a) Trong mp(CDHK), qua K vẽ đường thẳng song song với CD, cắt DH tại N.

Trong mp(BCKF), qua K vẽ đường thẳng song song với BC, cắt BF tại P.

Ta có: NK // CD, mà CD ⊂ (ACBD) nên NK // (ABCD).

           KP // BC, mà BC ⊂ (ACBD) nên KP // (ABCD).

           NK, KP cắt nhau tại K trong mp(NPK).

Do đó (NPK) // (ABCD).

Khi đó mp(R) qua K và song song với (ABCD) chính là mp(NPK).

Trong mp(ADHE), qua N vẽ đường thẳng song song với AD, cắt AE tại Q.

Khi đó mp(R) là mp(NKPQ).

Vậy: (NKPQ) ∩ (ADHE) = QN;

         (NKPQ) ∩ (CDHK) = NK;

         (NKPQ) ∩ (BCKF) = KP;

         (NKPQ) ∩ (ABFE) = PQ.

b)Ta có: DH cắt NK tại N, mà NK ⊂ (R) nên giao điểm của DH và (R) là điểm N.

Theo bài, I là giao điểm của DH và (R) nên điểm I và điểm N trùng nhau.

Tương tự ta cũng có điểm J trùng với điểm P.

Ta có: (ABCD) // (EFMH) và (R) // (ABCD) nên (EFMH) // (R) // (ABCD).

Lại có, hai cát tuyến FB, HD cắt ba mặt phẳng song song (EFMH), (R), (ABCD) lần lượt tại F, J, B và H, I, D nên theo định lí Thalès ta có: \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\) .

Mặt khác, trong mp(CDKH), tứ giác CDIK có CK // DI (do CK // DH) và IK // CD

Do đó CDIK là hình bình hành, suy ra DI = CK = 40 cm.

Khi đó HI = DH – DI = 75 – 40 = 35 (cm).

Vì vậy, từ \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\) ta có: \(\frac{{FJ}}{{35}} = \frac{{60}}{{75}}\) , suy ra \(FJ = \frac{{35.60}}{{75}} = 28\) (cm).

Vậy FJ = 28 cm.

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)