Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng \(60^0\)
a) Tính thể tích hình chóp S.CDNM
b) Tính khoảng cách giữa DM và SC
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác ABC vuông ở B, \(AB=a,BC=a\sqrt{3}\), hình chiếu vuông góc của A' lên mặt phẳng đáy trùng với trung điểm của AC, góc giữa mặt bên (ABB'A') và mặt phẳng đáy bằng \(60^0\). Tính thể tích hình lăng trụ đó theo a ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, \(AD=a,AB=2a,\widehat{ABC}=45^0\). SA vuông góc với đáy, góc giữa mặt bên (SBC) và đáy bằng \(60^0\). Tính thể tích hình chóp ?
Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r \(\left(0< r< R\right)\) nội tiếp (H)
a) Tính tỉ số thể tích của (H') và (H)
b) Xác định r để (H') có thể tích lớn nhất
Cho hình hộp đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a. \(\widehat{BAD}=120^0;\widehat{BA'D}=90^0\). Tính thể tích hình hộp theo a ?
Cho 3 điểm \(A\left(1;2;1\right),B\left(2;-1;1\right),C\left(0;3;1\right)\) và đường d :
\(\dfrac{x}{-3}=\dfrac{y}{-1}=\dfrac{z}{2}\)
a) Viết phương trình mặt phẳng (P) đi qua A , song song với d sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P)
b) Tìm tập hợp những điểm cách đều ba điểm A, B, C
cho hình chóp SABCD biết ABCD là một hình thang vuông ở A và D; AB=2a; AD=DC=a. Tam giác SAD vuông ở S. Gọi I là trung điểm AD. Biết (SIC) và (SIB) cùng vuông góc mặt phẳng (ABCD). Tính thể tích SABC
Cho lăng trụ ABC.A'B'C'
a) Tính tỉ số \(\dfrac{V_{ACA'B'}}{V_{ABC.A'B'C'}}\)
b) Tính \(V_{ACA'B'}\) biết tam giác ABC là tam giác đều cạnh bằng a, AA' = b và AA' tạo với (ABC) một góc bằng \(60^0\)
Trong không gian Oxyz, cho \(S\left(0;0;2\right),A\left(0;0;0\right),B\left(1;2;0\right),C\left(0;2;0\right)\)
a) Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với SB
b) Tìm tọa độ của các điểm B' là giao của (P) với đường thẳng SB, C' là giao của (P) với đường thẳng SC
c) Tính thể tích tứ diện SAB'C
d) Tìm điểm đối xứng với B qua mặt phẳng (P)
e) Chứng minh các điểm A, B, C, B', C' cùng thuộc một mặt cầu. Viết phương trình của các mặt cầu đó và phương trình của mặt phẳng tiếp xúc với mặt cầu đó tại C'