+ Chọn mp (SAC) chứa PN .
Ta có: - (SAC) giao ( BID) = I .
* I ∈ SC ⊂ (SAC).
* I ∈ ( BID).
Trong mp ( ABCD) có : AC cắt BD tại O .
=> Giao tuyến là OI.
Cho OI cắt PN tại đâu thì đấy là giao điểm.
+ Chọn mp (SAC) chứa PN .
Ta có: - (SAC) giao ( BID) = I .
* I ∈ SC ⊂ (SAC).
* I ∈ ( BID).
Trong mp ( ABCD) có : AC cắt BD tại O .
=> Giao tuyến là OI.
Cho OI cắt PN tại đâu thì đấy là giao điểm.
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC) ?
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN) ?
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN) ?
Cho hình chóp tam giác S.ABC. Gọi M, N lần lượt là trung điểm của AC, BC và G là trọng tâm tam giác (ABD).
a) Tìm giao tuyến giữa PN và (BDI) với I là trung điểm của NC.
b) TÌm thiết diện hình chóp cắt bởi (CMP)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. gọi M,N,P lần lượt là trung điểm của AD,CD,SB.
a) Tìm giao tuyến của (SAC) và (SBM). Tìm giao điểm I của SO và (MNP)
b) Xác định thiết diện của hình chóp S.ABCD cắt bởi (MNP)
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành , có tất cả các cạnh bằng a. Gọi E, F lần lượt là trung điểm của SA, SB Gọi M là một điểm thuộc cạnh BC sao cho BM = 2MC.
a, Chứng minh AB // (MEF)
b, Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MEF) và tính diện tích thiết diện
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SAa. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi M là trung điểm của các cạnh SB. a) Tìm giao tuyến của mặt phẳng (SAD) với mặt phẳng (SBC)? b) Tìm giao tuyến I của đường thẳng DM với (SAC)? c) Tìm thiết diện của mặt phẳng (MDC) với hình chóp S.ABCD?
Cho hình chóp A.ABCD có đáy là hình thang (đáy lớn AD). Gọi O là giao điểm của AC và BD, I và J lần lượt là trung điểm của SB và SC
a) Xác định giao điểm M của AI và (SCD)
b) Chứng minh IJ // (SAD)
c) Xác định thiết diện của hình chóp cắt bởi mp(P) qua I, song song với DS và AC
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD).
b) Chứng minh BN // (SDM).
c) Tìm giao điểm của các đường thẳng AN và MN với mặt phẳng (SBD).
Cho hình chóp A.BCD có đáy là hình thang ABCD (có đáy nhỏ BC). Gọi M, N lần lượt là trung điểm của AB và SD, O là giao điểm của AC và DM
a) Tìm giao điểm của MN và mặt phẳng (SAC)
b) Tìm thiết diện của hình chóp với mặt phẳng (NBC). Thiết diện đó là hình gì ?