a) Trong mặt phẳng (ABCD) đường thẳng NP cắt đường thẳng AB, AD lần lượt tại E, F. Từ đó có thiết dện là MQPNR.
b) Trong (SAC): SO ∩ MC = K, chứng minh đó là điểm cần tìm
a) Trong mặt phẳng (ABCD) đường thẳng NP cắt đường thẳng AB, AD lần lượt tại E, F. Từ đó có thiết dện là MQPNR.
b) Trong (SAC): SO ∩ MC = K, chứng minh đó là điểm cần tìm
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. gọi M,N,P lần lượt là trung điểm của AD,CD,SB.
a) Tìm giao tuyến của (SAC) và (SBM). Tìm giao điểm I của SO và (MNP)
b) Xác định thiết diện của hình chóp S.ABCD cắt bởi (MNP)
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC) ?
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN) ?
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN) ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P theo thứ tự là trung điểm của các đoạn SB, SC, SA.
a) Tìm giao điểm giữa PN và (BDI), với I là trung điểm của NC
b) Tìm thiết diện hình chóp cắt bởi (CMP)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD).
b) Chứng minh BN // (SDM).
c) Tìm giao điểm của các đường thẳng AN và MN với mặt phẳng (SBD).
Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C' là trung điểm của SC và M là một điểm di động trên cạnh SAa. Mặt phẳng (P) di động luôn đi qua C'M và song song với BC
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi M là trung điểm của các cạnh SB. a) Tìm giao tuyến của mặt phẳng (SAD) với mặt phẳng (SBC)? b) Tìm giao tuyến I của đường thẳng DM với (SAC)? c) Tìm thiết diện của mặt phẳng (MDC) với hình chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AD || BC, AD= 2BC ). Gọi M, N lần lượt là trung điểm SA và AB.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh MN//(SBC)
c) Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (OMN)
Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.
a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP)
b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì ?
c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành , có tất cả các cạnh bằng a. Gọi E, F lần lượt là trung điểm của SA, SB Gọi M là một điểm thuộc cạnh BC sao cho BM = 2MC.
a, Chứng minh AB // (MEF)
b, Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MEF) và tính diện tích thiết diện