chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
cho hình chóp S.ABCD có đáy là hình bình hành tâm O . gọi M,N lần lượt là hai điểm nằm trên cạnh SB,SD sao cho SB=4MB ; SD=4ND. Gọi P là điểm đối xứng với O qua C . chứng minh
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm AB,AD,SO. Xác định thiết diện của hình chóp với mặt phẳng (MNP)
Cho hình chóp SABCD, đáy là hình bình hành ABCD. Gọi M,N lần lượt là trung điểm SA,CD. Chứng minh MN // (SBC)?
help pls
Cho hình chóp SABCD, có đáy ABCD là hình bình hành tâm O.
a) Tìm giao tuyến của hai mặt phẳng SAC và SBD ?
b) Gọi M là trung điểm của SD. Chứng minh: SB / /MAC?
c) Gọi I là trung điểm của AB. Tìm giao điểm của đường thẳng MI và mặt phẳng SAC ?
d) Thiết diện của hình chóp cắt bởi mặt phẳng P đi qua điểm M và song song với SBC?
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB. Một mặt phẳng \(\left(\alpha\right)\) cắt SB, SC và CD lần lượt tại N, P và Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi I là giao điểm của MN và PQ. Chứng minh rằng I nằm trên một đường thẳng cố định ?
Cho hình chóp S.ABCD với ABCD là hình thang đáy lớn AD
a) Xác định giao tuyến của 2 mp (SAB) và (SCD)
b) Gọi M là trung điểm của BC, mp (P) qua M và song song với 2 đường thẳng SA và CD. Xác định thiết diện của mp (P) với hình chóp đã cho