Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O,cạnh 2a. Cạnh bên SA vuông góc với đáy. Cạnh SB tạo với đáy một góc 45°. H là hình chiếu của A trên SB. M là trung điểm của CD
a)AH vuông góc với(SBC)
b)Tính khoảng cách từ C đến (SOM)
cho hình chóp SABCD đều
a. CM: SO vuông góc đáy ( O giao của 2 đường chéo)
b. tính góc tạo bởi cạnh bên và mặt phẳng đáy
Cho hình chóp SABC, đáy tam giác ABC vuông tại B. Gọi H là hình chiếu của A lên SB(SA vuông góc (ABC)) a. Chứng minh: BC vuông góc (SAB) B. Gọi I là hình chiếu của B lên AC Chứng minh BI vuông góc (SAC) c. Kẻ AK vuông góc SC tại K, Chứng minh:AH vuông góc SC
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B , AB=BC=a . Cạnh bên SA vuông góc với mặt phẳng đáy, SA =a căn 2
a) CM BC vuông SB
b) Xác định và tính góc giữa SC và (ABC)
Cho h/c SABCD có đáy ABCD là hình thang vuông tại A, B, SA⊥(ABCD), AD=2a, AB=BC=a
cm: a) CD⊥(SAC)
b) CD⊥ SC
cho hình chóp sabc có abc là tam giác vuông tại a, sb vuông (abc) sb=ab. gọi h,i,k lần lượt là trung điểm sa,bc,ab chứng minh ab vuông ih
Cho tứ diện SABC có đáy là tam giác đều cạnh a SA vuông góc với đáy SA=2a. Mặt phẳng (P) qua B vuông góc với SC. Diện tích thiết diện tạo bởi (P) với SABC?
mọi người giải giúp ạ !
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có ABD là tam giác đều, BCD là tam giác cân tại C có ∠BCD = 120o. SA vuông góc với mp đáy.
a, Gọi H, K là hình chiếu vuông góc của A trên SB, SD. CM: SC vuông góc với (AHK).
b, Gọi C' là giao điểm của SC với mp (AHK). Tính diện tích tứ giác AHC'K khi AB = SA = a.
Mình chỉ cần giúp phần b thôi nha, rất mong có phần giải thích để tìm ra giao điểm C'.
Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) .
Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều là các tam giác vuông . | b ) Gọi M , P lần lượt là hình chiếu của A lên SB , SD . Tìm giao điểm N của SC với mặt phẳng ( APM ) . CMR : SC vuông góc với mặt phẳng ( APM ) , AN vuông góc với MP . c ) Tính diện tích thiết diện tạo bởi mặt phẳng ( APM ) với hình chóp .
Bài 3 . Cho hình chóp S . ABCD đáy ABCD là hình thang vuông tại A và D , AD = DC = a , AB = 2a , mp ( SAB ) vuông góc với ( ABC ) , tam giác SAB đều . a ) Xác định và tính chiều cao của hình chóp . b ) Xác định và tính góc giữa các cạnh bên và mặt đáy của hình chóp . c ) Gọi I là trung điểm của AB . Xác định và tính khoảng cách giữa SA và IC , SD và IC . d ) Xác định và tính diện tích thiết diện tạo bởi mặt phẳng ( P ) đi qua | trung điểm J của BC song song với AB và vuông góc với mp ( ABC ) cắt hình chóp . Bài 4 . Cho hình chóp S . ABC ; SA , SB , SC đối mặt vuông góc , SA = 2 , AC = av3 , BC = 2a . a ) Tính khoảng cách từ S đến mặt phẳng ( ABC ) . b ) Gọi H là hình chiếu vuông góc của S lên mặt phẳng ( ABC ) . CMR : H là trực tâm của tam giác ABC . c ) Xác định và tính góc giữa mặt phẳng ( SBC ) và ( ABC ) . d ) Tính khoảng cách giữa các đường thẳng AC và SB , SC và AB .
Bài 5 . Cho hình vuông ABCD . Gọi S là điểm trong không gian sao cho SAB là tam giác đều và mp ( SAB ) vuông góc với mp ( ABCD ) . a ) CMR : mp ( SAB ) 1 mp ( SAD ) ; mp ( SAB ) 1 mp ( SBC ) . b ) Tính góc giữa hai mặt phẳng ( SAD ) và ( SBC ) . c ) Gọi H và I lần lượt là trung điểm của AB và BC . CMR : mp ( SHC ) 1 mp ( SDI ) .
Bài 6 . Cho tứ diện SABC , hai mặt phẳng ( SAB ) và ( SBC ) vuông góc với nhau và SA 1 mp ( ABC ) , SB = a2 , góc BSC bằng 45° . a ) CMR : BC 1 SB . b ) Tìm điểm cách đều bốn điểm S , A , B , C . a