Bài 2. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm AB và CD.
a/ Chứng minh tứ giác AMCN là hình bình hành
b/ AN và CM cắt BD theo thứ tự tại E và F. Chứng minh DE = EF = FB
c/ Tìm điều kiện của hình bình hành ABCD để tứ giác MENF là hình chữ nhật
Cho hình bình hành ABCD có AB = 2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD.
a) Các tứ giác AEFD, AECF là hình gì ? Vì sao ?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật ?
c) Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông ?
Cho hình bình hành ABCD , trên AC lấy 2 điểm M và N sao cho AM = CN
a. Tứ giác BMND là hình gì ?
b. Hình bình hành ABCD phải thêm điều kiện gì thì BNDM là hình thoi
c. BM cắt AD tại K xác định vị trí của M để K là trung điểm của AD
d. Hình bình hành ABCD thỏa mãn cả 2 điều kiện ở b,c thì phải thêm điều kiện gì để BNDM là hình vuông
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD
a) Tứ giác DEBF là hình gì ? Vì sao ?
b) Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm
c) Gọi giao điểm của AC với DE và BF theo thứ tứ là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, E và F thứ tự là trung điểm của OD và OB.
1) Chứng minh: Tứ giác AECF là hình bình hành.
2) Tia AE cắt CD tại K, gọi H là trung điểm của KC. Chứng minh OH // CF.
3) Chứng minh : CF = 3EK
Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB, BD cắt AC tại O chứng minh rằng :
a, Tứ giác AECK là hình bình hành
b, ba điểm E,O,K thẳng hàng
Cho hình chữ Nhật ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của ĂN và DM, Q là giao điểm của BN và Cm
a) tứ giác AMIN là hình gì? Vì sao
b) chứng minh tứ giác MNPQ là hình bình hành
Cho hình bình hành ABCD có AD = 2AB, góc A = 60°. Gọi E, F lần lượt là trung điểm của BC và AD a) Chứng minh tứ giác ABEF là hình bình hành b) Chứng minh tứ giác BFDC là hình thang cân
cho hình bình hành ABCD có góc D = 60 độ , CD = 2BC . gọi E và F theo thứ tự là trung điểm của AB và CD
a) cm DEBF là hình bình hành
b) tứ giác AEFD là hình gì ? vì sao ?
c) gọi M là giao điểm của DE và AF , N là giao điểm của CE và BF . c/m EMFN là hình chữ nhật