Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H, kẻ CK vuông góc với BD tại K
a) Chứng minh AHCK là hình bình hành
b) Gọi I là trung điểm của HK, chứng minh IB = ID
Cho hình bình hành ABCD có góc A từ và AB>BC.Kẻ AH vuông góc với DC tại H,CK vuông góc với AB tại K.a,Tứ giác AKCH là hình gì? b,Gọi E là giao điểm của BD và AH,F là giao điểm của BD và CK.Chứng minh rằng HDE=KBF và AF=CE c,AF cắt BC tại I và CE cắt AD tại J.Chứng minh IJ,HK,BD cùng đi qua 1 điểm
Cho hình bình hành ABCD có ac<bd. Từ A kẻ AH vuông góc với BD. Từ C kẻ CK vuông góc với BD. Gọi O là trung điểm BD
a) Chứng minh: AHCK là hình bình hành, từ đó suy ra OH=CK
b) Chứng minh: HD=BK
cho hình bình hành ABCD (A>90).Gọi H và K lần lượt là hình chiếu của A và C lên BD . M là giao của AB với BK ;N là giao của CD với AH chứng minh
a) AHCK là hình bình hành
b) MN;HK;AC đồng quy
cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của AB và CD. Gọi M, N là giao điểm của AI, CK với BD. Chứng minh: a) tam giác ADM=CBN b) góc ADM=NCA và IM//CN
Giúp mình với!
Cho hình bình hành ABCD. Lấy M là trung điểm của AB, N là trung điểm của CD. Gọi I là giao điểm của AN và DM, K là giao điểm của BN và CM.
a) Chứng minh: MD // BN.
b) Chứng minh tứ giác INKM là hình bình hành.
c) Gọi O là giao điểm của AC và BD. Chứng minh rằng I, O, K thẳng hàng.
Bài 1. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm của các cạnh BC và AD, O là giao điểm của AC và BD. Chứng minh: a) Tứ giác AMCN là hình bình hành. b) Ba điểm M , N, O thẳng hàng.