AM+BM+DM=0
<=> AM+(BC+CM)+(DA+AM)=0
<=>2AM+(BC+DA)+CM=0
<=>2(1/3AC)-MC=0
<=>2/3AC - 2/3 AC=0
<=>0=0 (ĐPCM)
AM+BM+DM=0
<=> AM+(BC+CM)+(DA+AM)=0
<=>2AM+(BC+DA)+CM=0
<=>2(1/3AC)-MC=0
<=>2/3AC - 2/3 AC=0
<=>0=0 (ĐPCM)
Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Cho đường tròn tâm (O) và một điểm M nằm ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với (O). Trên cung nhỏ AB lấy điểm C bất kì, từ C kẻ tiếp tuyến thứ ba với (O) cắt MA,MB lần lượt tại E,F. EO cắt AC tại H,FO cắt BC tại K. Qua O kẻ đường thằng song song với AB cắt MA,MB lần lượt tại P,Q
a) Chứng minh tứ giác BFCO nội tiếp
b)Chứng minh OE.OH=OF.OK và góc EOP=góc OFQ
c) Chứng minh\(EP+EQ\ge PQ\)
Cho hình vuông ABCD tâm có cạnh bằng a, tâm O. M là điểm thỏa mãn hệ thức \(\left|\overrightarrow{MA}+\overrightarrow{MC}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\) Khoảng cách lớn nhất từ M đến D bằng?
Trong mặt phẳng Oxy, cho A(- 2; 0), B(5; - 4), C(3;7). Tọa độ điểm D để tứ giác ACBD là hình bình hành là:
Cho đoạn thẳng AB có độ dài bằng a (a > 0). Điểm M di động sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\). Gọi H là hình chiếu vuông góc của M lên AB. Khi đó độ dài lớn nhất của đoạn thẳng MH là?
Cho hình thang ABCD có 2\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\). AC = 8; BD = 6 và
\(\left(\overrightarrow{AC};\overrightarrow{BD}\right)=120^0\). Khi đó giá trị của S = AD + BC là
A. \(\dfrac{13+2\sqrt{5}}{2}\)
B. \(\dfrac{14+4\sqrt{7}}{3}\)
C. \(\dfrac{15+2\sqrt{10}}{4}\)
D. \(6+4\sqrt{3}\)
Cho gình chữ nhật ABCD có BK vuông góc AC, M và N lần lượt là trung điểm của các cạnh AK ,CD chứng minh BM vuông góc MN
ai giúp em bài này với ạ
Chứng minh phương trình sau vô nghiệm:
\(\sqrt{x-1}+\frac{x-10}{\left(x-5\right)\sqrt{x-1}+5-2x}=0\)