cho hình thang ABCD \(\left(AB//CD\right)\)có AB<CD. gọi O là giao điểm 2 đường chéo, S là giao điểm của 2 đường thẳng chứa 2 cạnh bên.Đường thẳng SO cắt AB, CD theo thứ tự tại M,N.CMR
a,\(\dfrac{MA}{ND}=\dfrac{MB}{NC};\dfrac{MA}{NC}=\dfrac{MB}{ND}\)
b,\(MA=MB;NC=ND\)
Bài1: Cho tam giác ABC, DE//BC, D thuộc AB, E thuộc AC. Trên tia đối tia CA lấy F sao cho CF= BD. DF cắt BC tại M. a) MD/MF=ACIAB b) Cho BC=8;BD=5;DE=3. Chứng minh tam giác ABC cân.
Bài2: Cho hình thang ABCD, AB//CD, M là trung điểm của CD, AM cắt BD tại I, BM cắt AC tại K a) IK//AB b) IK cắt AD và BC tại E,F. Chứng minh El=KF c) AC cắt BD tại O. Qua O vẽ đường thắng // AB cắt AD, BC tại M,N. Chứng minhh MO=NO và 2/MN= 1/AB+1/CD
Bài3 (HSG) Cho tam giác ABC đường thẳng qua A cắt BC, CA, AB tại M,N,P. chứng minh MB/MC. NC/NA. PA/PB=1
Cho hình thang ABCD (AB//CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD, BC lần lượt ở M, N sao cho \(\dfrac{MA}{MD}\)=\(\dfrac{1}{2}\)
a, Tính tỉ số \(\dfrac{NB}{NC}\)
b, Cho AB = 8cm, CD = 17cm. Tính MN
cho hình bình hành ABCD đương thẳng d đi qua A cắt đường chéo BD tại P, cắt BC và CD lần lượt tại M và N. Cm
a/ BM.DN ko đổi
b/1/AM+1/AN=1/AP
Hình thang cân ABCD (AB //CD) có hai đường chéo AC và BD cắt nhau tại O 9h.11).
Gọi M, N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3OM, đáy lớn CD = 5,6 cm
a) Tính độ dài đoạn thẳng MN và đáy nhỏ AB
b) So sánh độ dài đoạn thẳng MN với nửa hiệu các độ dài của CD và AB
Câu 1: Cho hình thang ABCD (AB // CD) gọi I là giao điểm của hai đường chéo AC và BD. Một điểm M trên đấy AB và MA = 2cm, MB = 6cm, cạnh đáy CD = 12cm. Đường thẳng IM cắt đáy CD tại N. a) Tính tỉ số NC/ND b) Tính độ dài đoạn thẳng NC và ND
Bài 1: Cho hình thang ABCD ( AB//CD) . O là giao của 2 đường chéo , qua O kể đường thẳng // với 2 đáy cắt AD tại M, cắt BC tại N. CMR : O là trung điểm của MN
Bài 2: Cho \(\bigtriangleup{ABC}\) có S=120 cm2 . Đường cao AH , trung tuyến AM , gọi G là trọng tâm của \(\bigtriangleup{ABC}\). Đường thẳng đi qua G//BC cắt AB, AH, AC lần lượt tại E, I, F
a) Tính \(\dfrac{EF}{BC}\)và \(\dfrac{AI}{AH}\)
b) SAEF=?
Bài 3: Cho \(\diamond{ABCD}\) , đường thẳng đi qua A// với BC cắt BD tại E ; đường thẳng đi qua B // với AD cắt AC tại G
a) CM: EG//CD
b) Giả sử AB//CD . CM: AB2=CD.EG
Hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại O. Gọi M, K, N, H lần lượt là chân đường vuông góc hạ từ O xuống các cạnh AB, BC, CD, DA. Chứng minh rằng :
a) \(\dfrac{OM}{ON}=\dfrac{AB}{CD}\)
b)* \(\dfrac{OH}{OK}=\dfrac{BC}{AD}\)
1. Cho tam giác ABC có BC=3cm, trên tia đối tia AB lấy D sao cho AD=2AB, trên tia đối AC lấy E sao cho AE=2AC. Tính DE?
2. Cho tam giác ABC có AB= 12 cm. Trên cạnh AB lấy điểm D sao cho DB= 4cm. Kẻ DH và BK cùng vuông góc với AC tại H và K. Tính \(\dfrac{DH}{BK}\)
3. Cho tam giác MBC. Trên cạnh MB lấy điểm A sao cho MA= 2AB. Qua A vẽ đường thẳng song song với BC cắt MC tại D, biết AD= 18 cm. Tính BC?
4. Cho tam giác ABC. Điểm M trên cạnh BC sao cho MB= 2MC. Điểm N trên cạnh AC sao cho CA= 3CN.
a) Cm: AB= 3CN.
b) AM cắt BN tại G. Cm: GA = 3GM
5. Cho tam giác ABC, kép dài BA thêm 1 đoạn sao cho AE= \(\dfrac{1}{2}AB\); kéo dài CA thêm 1 đoạn sao cho AE= \(\dfrac{1}{2}AC\) Đường trung tuyến AI của tam giác ABC cắt DE tại K. Cm: K là trung điểm DE.