Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi E và F theo thứ tự là trung điểm DB và OD a, Chứng minh AE song song với CF b, Gọi K là giao điểm của AE và DC chứng minh KC bằng 2DK
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O, trên đoạn OB lấy điểm E bất kỳ (khác O,B), trên tia AE lấy điểm F sao cho E là trung điểm AF. Kẻ FM vuông góc với BC (M∈BC), kẻ FN vuông góc với đường thẳng DC (N thuộc đường thẳng DC).
a)Tứ giác CMFN là hình gì, vì sao?
b)Chứng minh CF // BD
c)Chứng minh ba điểm E,M,N thẳng hàng
Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB, BD cắt AC tại O chứng minh rằng :
a, Tứ giác AECK là hình bình hành
b, ba điểm E,O,K thẳng hàng
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại Mvà N. Chứng minh rằng:
a) Tứ giác AKCI là hình bình hành.
b) DM = MN = NB.
c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.
Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.
a, Tứ giác AEDF là hình gì? Vì sao?
b, Chứng minh: A đối xứng với C qua F.
c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, E và F thứ tự là trung điểm của OD và OB.
1) Chứng minh: Tứ giác AECF là hình bình hành.
2) Tia AE cắt CD tại K, gọi H là trung điểm của KC. Chứng minh OH // CF.
3) Chứng minh : CF = 3EK
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
Cho hình bình hành ABCD, O là trung điểm của BD. Kẻ AE, CF lần lượt vuông góc với BD tại E và F.
1) Chứng minh AE=CF
2) Chứng minh tứ giác AECF là hình bình hành
3) Gọi M là giao điểm của AE và CD, N là giao điểm của CF và AB. Chứng minh M và N đối xứng nhau qua O.
[ Cầu cao nhân giúp đỡ ]