a/ Do ABCD là hình bình hành nên:
- AB=CD; AD=BC
- Mà E là trung điểm của AD, F là trung điểm của BC
=> AE=ED=BF=FC
Xét △ABE và △FCD có:
- AE=CF (cmt)
- Góc BAE = Góc FCD (gt)
- AB=CD (gt)
=> △ABE=△CDF (c.g.c)
Vậy: BE=DF; góc ABE = góc CDF (đpcm)
b/ Ta có:
- BC // AD (gt)
- Tia BF thuộc tia BC, tia DE thuộc tia AD
=> BF // DE
DE = BF (cmt)
=> DEBF là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành)
Vậy: EB // DF (đpcm)