Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Mai

Cho hình bình hành ABCD có đường chéo AC>DB, vẽ AM vuông góc với BC tại M, AN vuông góc với CD tại N

a) Chứng minh hình tam giác ABM đồng dạng với hình tam giác AND

b) Chứng minh: AB.MN=AC.AM

c) CB.CM + CN.CD = CA2

Ngô Thành Chung
5 tháng 5 2019 lúc 14:07

a, Vì tứ giác ABCD là hình bình hành

\(\widehat{ABC}=\widehat{ADC}\) (2 góc đối)

\(\widehat{B_1}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{D_1}+\widehat{ADC}=180^0\) (kề bù)

\(\widehat{B_1}=\widehat{D_1}\)

Vì AM ⊥ BC ⇒ \(\widehat{AMB}=90^0\)

AN ⊥ CD ⇒ \(\widehat{AND}=90^0\)

ΔABM và ΔADN có

\(\left\{{}\begin{matrix}\widehat{AMB}=\widehat{AND}=90^0\\\widehat{B_1}=\widehat{D_1}\end{matrix}\right.\)

⇒ ΔABM ~ ΔADN (g.g)(đpcm)

b,

+) Vì tứ giác ABCD là hình bình hành

\(\left\{{}\begin{matrix}\text{AD = BC}\\\text{AB // CD}\end{matrix}\right.\)

Vì ΔABM ~ ΔADN

\(\frac{AB}{AD}=\frac{AM}{AN}\)

mà AD = BC

\(\frac{AB}{BC}=\frac{AM}{AN}\)

\(\frac{AB}{AM}=\frac{BC}{AN}\)

+) Vì \(\left\{{}\begin{matrix}\text{AN ⊥ CD}\\\text{AB // CD}\end{matrix}\right.\)

⇒ AN ⊥ AB

\(\widehat{BAN}=90^0\)

\(\widehat{ABC}\) là góc ngoài tại đỉnh B của ΔABM

\(\widehat{ABC}=\widehat{BAM}+\widehat{AMB}\)

\(\widehat{ABC}=\widehat{BAM}+90^0\) (\(\widehat{AMB}=90^0\))(1)

Ta có \(\widehat{AMN}=\widehat{BAN}+\widehat{BAM}\)

\(\widehat{AMN}=\widehat{BAM}+90^0\) (\(\widehat{BAN}=90^0\))(2)

Từ (1), (2) ⇒ \(\widehat{ABC}=\widehat{MAN}\)

+) ΔABC và ΔMAN có

\(\left\{{}\begin{matrix}\frac{AB}{AM}=\frac{BC}{AN}\\\widehat{ABC}=\widehat{MAN}\end{matrix}\right.\)

⇒ ΔABC ~ ΔMAN (c.g.c)

\(\frac{AB}{AM}=\frac{AC}{MN}\)

⇒ AB . MN = AC . AM (đpcm)

c, KẺ THÊM:

KẺ DE ⊥ AC TẠI E

KẺ BK ⊥ AC TẠI K

Vì tứ giác ABCD là hình bình hành

⇒ AD // BC

\(\widehat{A_1}=\widehat{C_1}\) (so le trong)

Vì DE ⊥ AC ⇒ \(\widehat{AED}=\widehat{CED}=90^0\)

Vì BK ⊥ AC ⇒ \(\widehat{BKC}=90^0\)

ΔCED và ΔCNA có

\(\left\{{}\begin{matrix}\widehat{C_2}\text{ chung}\\\widehat{CED}=\widehat{CNA}=90^0\end{matrix}\right.\)

⇒ ΔCED ~ ΔCNA (g.g)

\(\frac{CE}{CN}=\frac{CD}{CA}\)

⇒ CN . CD = CE . CA (3)

ΔCBK và ΔCAM có

\(\left\{{}\begin{matrix}\widehat{C_1}\text{ chung}\\\widehat{CKB}=\widehat{CMA}=90^0\end{matrix}\right.\)

⇒ ΔCBK ~ ΔCAM (g.g)

\(\frac{CB}{CA}=\frac{CK}{CM}\)

⇒ CB . CM = CK . AC (4)

Từ (3), (4)

⇒ CB.CM + CN.CD = CE.AC + CK.AC

⇒ CB.CM + CN.CD = AC.(CE + CK) (5)

ΔADE và ΔCBK có

\(\left\{{}\begin{matrix}\widehat{AED}=\widehat{CKB}=90^0\\\text{AD = BC}\\\widehat{A_1}=\widehat{C_1}\end{matrix}\right.\)

⇒ ΔADE = ΔCBK (ch.gn)(bằng nhau nha. Không phải đồng dạng đâu)

⇒ AE = CK (6)

Từ (5), (6)

⇒ CB.CM + CN.CD = AC.(CE + AE)

⇒ CB.CM + CN.CD = AC.AC

⇒ CB . CM + CN .CD = AC2 (đpcm)

Hình mình để bên dưới nhé! Trình bày có chỗ hơi khó hiểu hoặc khó nhìn nhưng thông cảm nhé! Nhớ đọc kĩ và hết phần bài của mình nha ! banhbanh

Ôn tập cuối năm phần hình học

Chúc bạn học tốt !!!! yeuyeuhehehehe


Các câu hỏi tương tự
Hắc Lang
Xem chi tiết
Ctuu
Xem chi tiết
Mai Thị Bích Ngọc
Xem chi tiết
Linh Chii
Xem chi tiết
nguyễn vũ thành công
Xem chi tiết
Nguyễn Hương Trang
Xem chi tiết
Tu Lưu
Xem chi tiết
DINH HUY TRAN
Xem chi tiết
Nguyễn Mỹ
Xem chi tiết