Gọi O là giao điểm của AC va BD
\(AO^2=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)
⇒\(\dfrac{n^2}{4}=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)
⇒\(n^2=2\left(a^2+b^2\right)-m^2\)
⇒⇒\(n^2+m^2=2\left(n^2+m^2\right)\)
Gọi O là giao điểm của AC va BD
\(AO^2=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)
⇒\(\dfrac{n^2}{4}=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)
⇒\(n^2=2\left(a^2+b^2\right)-m^2\)
⇒⇒\(n^2+m^2=2\left(n^2+m^2\right)\)
Cho hình bình hành ABCD có AB = a; BC = b; BD = m và AC = n.
Chứng minh rằng : \(m^2+n^2=2\left(a^2+b^2\right)\) ?
Cho hình bình ABCD có AB = a, BC = b, BD = m và AC = n. Chứng minh rằng m bình phương + n bình phương = 2( a bình phương + b bình phương)
Cho hình bình hành ABCD có AB = a, BC = b ,BD = m, và AC = n. Chứng minh rằng m2 + n2 = 2(a2 + b2 )
Cho tứ giác ABCD. Dựng hình bình hành ABCD. Chứng minh rằng tứ giác ABCD và tam giác ACC' có diện tích bằng nhau ?
Cho hình tứ giác ABCD có đường chéo AC = x, đường chéo BD = y và góc tạo bởi AC và BD là \(\alpha\). Gọi S là diện tích của tứ giác ABCD
a) Chứng minh rằng \(S=\dfrac{1}{2}x.y.\sin\alpha\)
b) Nêu kết quả trong trường hợp AC vuông góc với BD
Cho tam giác ABC có a2 = b2 + c2 − bc. Góc B bằng bao nhiêu?
A. 1500 B. 1200 C. 600 D. 300
Cho tam giác ABC vuông tại A, cho AC=b, AB =c, trên BC lấy M sao cho góc BAM bằng anpha. Chứng minh AM = bc/(b.cos(anpha)+c.cos(\alpha ))
Cho tam giác ABC có AB=c,AC=b,BC=a với a,b,c>0 thỏa mãn a^4=b^4+c^4.Chứng minh tam giác ABC nhọn
cho 2 hình bình hành ABCD và A'BC'D' có chung đỉnh B
a) chứng minh răng:vectơ DD'= vectơ AA'+vectơ CC' (khỏi làm)
b)chứng minh rằng tam giác ACD' và tam giác A'C'D có cùng trọng tâm..