Cho đường tròn (O; R) và 1 dây cung AB cố định, M là 1 điểm thay đổi trên đường tròn . Vẽ hình bình hành MABC. Tìm tập hợp điểm C .
3) cho hình thang ABCD (đáy AB nhỏ), 2 đường chéo AC và BD vuông góc với nhau tại I. gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA.
a) c/m: đường cao và độ dài đường trung bình của hình thang bằng nhau
b) c/m 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
giúp mk vs ạ mk cần gấp
Cho 2 đường thẳng xx’ và yy’ vuông góc với nhau tại O. A là điểm cố định trên Ox, B là điểm cố định trên Oy mà OA=OB. Gọi C là điểm chuyển động trên đoạn OB. Đường thẳng vuông góc với AC vẽ từ B cắt Ac tại E và xx’ tại D
a)chứng minh OC=OD.
b) Tìm quỹ tích điểm E
c) Tìm quỹ tích điểm F là tâm đường tròn đi qua 4 điểm O,C,E,D
d)Chứng minh OE là phân giác của góc DEA
e) Gọi G là hình chiếu của O xuống BD. Tìm quỹ tích của điểm G
Cho tam giác ABC nội tiếp (O) có B, C cố định, A chuyển động trên (O). M là trung điểm AB. Kẻ \(MK\perp AC\left(K\in AC\right)\). Chứng minh rằng K chuyển động trên một đường tròn cố định.
). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho ; AC AB CB cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F. 1) Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2) Gọi M là một điểm bất kì trên cung lớn BD của (O) (M khác B và D). Chứng minh: . BMD OFD 3) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng độ dài đoạn OA. Tính giá trị của ACAB. 4) Gọi P là điểm thay đổi trên đoạn thẳng AC, đường thẳng BP cắt (O) tại N. Hỏi khi P di chuyển trên AC thì tâm đường tròn ngoại tiếp tam giác CPN chạy trên đường nào?
cho ΔABD vuông cân tại D và nội tiếp đtròn O. Dựng hình bình hành ABCD; gọi h là chân đường vuông góc kẻ từ D đến AC, K là giao điểm của AC với đtròn O. Cmr:
a/ tứ giác HBCD nội tiếp
b/ DOK=2.BDH
c/ CK.CA=2.BD2
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho AC > AB, CB cắt đường tròn tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tai F. 5) Chứng minh rằng tứ giác AEFD nội tiếp đường tròn. 6) Gọi M là một điểm trên cung lớn BD của đường tròn (O) (M khác B và D). Chứng minh rằng . BMD OFD 7) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng đoạn OA. Tính giá trị của ACAB. 8) Gọi P là điểm di động trên đoạn AC, đường thẳng BP cắt đường tròn (O) tại N. Chứng minh rằng tâm của đường tròn ngoại tiếp tam giác CPN luôn nằm trên một đường thẳng cố định khi P thay đổi trên đoạn thẳng AC.
Cho đường tròn(O,R) và 1 điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC ( B,C là tiếp điểm). Kẻ đường kính BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a)Chứng minh: OABC và DC//OA.
b) Chứng minh AEDO là hình bình hành.
c) Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh: IK.IC+IA.OI=
Cho hình thang cân ABCD có AB song song với BC và AD =2CD=2BC.Chứng minh rằng 4 bốn điểm A,B,C,D cùng nằm trên một đường tròn tâm O và AC⊥OB