a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM