Thay \(y=0\Rightarrow f\left(x\right)=f\left(x\right)+f\left(0\right)\Rightarrow f\left(0\right)=0\)
Đặt \(g\left(x\right)=f\left(x\right)-x^2\Rightarrow g\left(0\right)=0\)
\(g\left(x+y\right)=f\left(x+y\right)-\left(x+y\right)^2=f\left(x\right)+f\left(y\right)+2xy-\left(x+y\right)^2\)
\(=\left[f\left(x\right)-x^2\right]+\left[f\left(y\right)-y^2\right]=g\left(x\right)+g\left(y\right)\)
Vậy quy về tìm hàm \(g\) thỏa \(g\left(x+y\right)=g\left(x\right)+g\left(y\right)\)
\(g\left(x+\Delta x\right)=g\left(x\right)+g\left(\Delta x\right)\Rightarrow g\left(x+\Delta x\right)-g\left(x\right)=g\left(\Delta x\right)-g\left(0\right)\)
\(\Rightarrow\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)
Lấy giới hạn 2 vế: \(\lim\limits_{\Delta x\rightarrow0}\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)
\(\Leftrightarrow g'\left(x\right)=g'\left(0\right)=const\) (theo định nghĩa về đạo hàm)
\(\Rightarrow g\left(x\right)=c.x\) với c là hằng số
\(\Rightarrow f\left(x\right)=x^2+cx\)
Thay vào pt dưới: \(\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x}\right)=\frac{x^2+cx}{x^4}=\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x^3}\right)\)
\(\Leftrightarrow c\left(\frac{1}{x}\right)=c\left(\frac{1}{x^3}\right)\)
Điều này thỏa mãn với mọi x khi và chỉ khi \(c=0\)
\(\Rightarrow f\left(x\right)=x^2\Rightarrow f\left(\sqrt{2019}\right)=2019\)