Bài 1. Cho hàm số y= f(x)= {-2(x2 + 1) khi x ≤ 1 Tính f(1);f(2),f(√2 phần 2);f(√2)
{4√x-1 khi x > 1
Bài 2.Cho hàm số y= f(x)= { √-3x+8 khi x < 2 Tính f(-3);f(2);f(1),f(9)
{√x+7 khi x ≥ 2
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
1, Hàm số y = f(x) được cho bởi công thức : y = 3x^2 - 7 .
a, Tính f(1) ; f(0) ; f(5) .
b, Tìm các giá trị của x tương ứng với các giá trị của y lần lượt là : -4 ; 5 ; 20 ; -6_2/3 .
Help me !
xét tính đồng biến nghịch biến của các hàm số trên
\(y=f\left(x\right)=x^2-2x+3\) trên khoảng \(_{\left(1;+\infty\right)}\)
y=f(x)=\(\sqrt{3-x}\) trên khoảng \(\left(-\infty;3\right)\)
Tìm tập xác định và xét tính chẵn lẻ của hàm số
y=f(x)=\(\dfrac{\left|x+1\right|-\left|x-1\right|}{\left|x+\text{2}\right|+\left|x-\text{2}\right|}\)
Khảo sát sự biến thiên của hàm số sau:
a;y=f(x)=\(\sqrt{x^2+2x+3}\)
b;y=f(x)=\(\sqrt{x^2-3x+2}\)
c;y=f(x)=\(\sqrt{-5x^2+2x+3}\)
Tìm tập xác định của hàm số sau đây :
a. y=\(\dfrac{2x}{x^3-1}\) b.y=f(x)=\(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x^3+x}\)
m.n ơi cứu mkgiúp mk bài này vs mk ko bt trình bày bài giải s cả
Cho hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x+2}-3}{x-1}\\x^2-1\end{matrix}\right.\) khi \(\left\{{}\begin{matrix}x\ge2\\x< 2\end{matrix}\right.\) Tính P=f(2) + f(-2) bằng bao nhiêu?
A. P=\(\dfrac{8}{3}\) B. P=4 C. P=6 D.P=\(\dfrac{5}{3}\) m.n giúp mk vs chọn đáp án r giải chi tiết ra giúp mk đc ko? tại mk cần nhất là lời giải chi tiết ak để mk hiểu thêmmong m.n giúp mk
hiện tại mk cần lời giải rất gấp ak CẢM ƠN M.N RẤT NHIỀU
Xét tính chẵn lẻ của các hàm số sau :
\(a\text{/}\) \(y=f\left(x\right)=\frac{2x^4-x^2+3}{x^2-1}\)
\(b\text{/}\) \(y=f\left(x\right)=\frac{\left|2x+1\right|+\left|2x-2\right|}{\left|2x+1\right|-\left|2x-1\right|}\)