Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=2x+m;\left(d_2\right):y=\left(m^2+1\right)x-1\) (Với m là tham số)
a) Tìm m để d1 cắt Ox ở A, cắt Oy ở B (A và B khác O) sao cho \(AB=2\sqrt{5}\)
b) Tìm tọa độ giao điểm C của d1 và d2 khi m=2
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
a.viết pt đường thẳng (d) biết đường thẳng (d) đi qua điểm N(2;3) và song song với đường thẳng y=2x-5
b.tìm tọa độ giao điểm của đồ thị hàm số y=x\(^2\) và y=2x+3
c.gọi \(x_1;x_2\) là nghiệm của phương trình x\(^2\)+2x-5=0. tính A=\(\left(x_1-x_2\right)^2+x_1x_2\)
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3
Cho hai đường thẳng: \(\left(d_1\right):y=2x-4\) và \(\left(d_2\right):y=-x-1\)
a, Vẽ hai đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) trên cùng mặt phẳng tọa độ Oxy
b, Tìm tọa độ giao điểm A của hai đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) bằng phép tính
c, Gọi B là giao điểm của đường thẳng \(\left(d_1\right)\) với trục Ox, C là giao điểm của đường thẳng \(\left(d_2\right)\) với trục Ox. Tìm tọa độ các điểm B, C. Tính diện tích tam giác ABC.
Cho hai đường thẳng: \(\left(d_1\right):y=2x-4\) và \(\left(d_2\right):y=-x-1\)
a, Vẽ hai đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) trên cùng mặt phẳng tọa độ Oxy
b, Tìm tọa độ giao điểm A của hai đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) bằng phép tính
c, Gọi B là giao điểm của đường thẳng \(\left(d_1\right)\) với trục Ox, C là giao điểm của đường thẳng \(\left(d_2\right)\) với trục Ox. Tìm tọa độ các điểm B, C. Tính diện tích tam giác ABC.
Cho 2 đường thẳng (d1):y=x+1 và (d2):y=-x+3
A, Gọi M là giao điểm của (d1),(d2).Tìm toạ độ giao điểm M (bằng phép toán )
B, Viết phương trình đường thẳng (y=ax+b). Biết rằng đường thẳng này có tung độ góc bằng 2 và cắt trục hoành tại điểm có hoành độ bằng -4
C, Cho đường thẳng (d3):y=(2m+1)x+n+1 ( với m ≠ -1/2). Với giá trị nào của m và n thì đường thẳng (d3)và (d2) trùng nhau.