a: \(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}\)
\(=\left(\dfrac{2}{x_1^2+1}-\dfrac{2}{x_2^2+1}\right)\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{2x_2^2+2-2x_1^2-2}{\left(x_1^2+1\right)\left(x_2^2+1\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{2\left(x_1+x_2\right)}{\left(x_1^2+1\right)\left(x_2^2+1\right)}\)
Khi 0<x1<1 và 0<x2<1 thì 0<x1+x2<2
=>A>0
=>Hàm số đồng biến
b: Khi x1>1 và x2>1 thì x1+x2>2>0
=>A>0
=>Hàm số vẫn đồng biến khi x>1 nha bạn