Cho hàm số \(y=\dfrac{x+1}{x}\) có đồ thị như Hình 4.
a) Tìm \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{x},\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{x}\).
b) Đường thẳng vuông góc với trục Ox tại điểm x cắt đồ thị hàm số tại điểm M và cắt đường thẳng y = 1 tại điểm N (Hình 4). Tính MN theo x và nhận xét về MN khi x → +∞ hoặc x → −∞.
a) Từ đồ thị ta thấy:
Khi \(x \to + \infty \)thì y tiến dần đến \(1\), vậy \(\mathop {\lim }\limits_{x \to + \infty } = \frac{{x + 1}}{x} = 1\)
Khi \(x \to - \infty \)thì y tiến dần đến \(1\), vậy \(\mathop {\lim }\limits_{x \to - \infty } = \frac{{x + 1}}{x} = 1\)
b) MN = y – 1 = \(\frac{{x + 1}}{x} - 1 = \frac{1}{x}\)
Khi \(x \to + \infty \) hoặc \(x \to - \infty \) thì MN tiến dần về 0